Доказательство роли днк в наследственности

Автор работы: Пользователь скрыл имя, 28 Апреля 2012 в 00:10, реферат

Краткое описание

Первоначально генетика изучала общие закономерности наследственности и изменчивости на основаниифенотипических данных.
Понимание механизмов наследственности, то есть роли генов как элементарных носителей наследственной информации, хромосомная теория наследственности и т. д. стало возможным с применением к проблеме наследственности методов цитологии, молекулярной биологии и других смежных дисциплин.

Содержимое работы - 1 файл

Введение.doc

— 748.00 Кб (Скачать файл)

                   Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.

                   Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

                   Гены расположены в хромосоме в линейной последовательности.

                   Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).

                   Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).

                   Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.

 

Способность клеток поддерживать высокую упорядоченность своей организации зависит от генетической информации, которая сохраняется в форме дезоксирибонуклеиновой кислоты (ДНК). Раскрытие роли ДНК в передаче наследственных свойств представляется одним из основных достижений современной биологии. В 1944 г. О. Эвери доказал, что именно ДНК ответственна за изменение (трансформацию) организмов. Это было показано в экспериментах с двумя формами бактерий (пневмококков). Одна из них обладала способностью образовывать капсулу и вызывать заболевание. Вторая форма не образовывала капсулы и не вызывала заболевания. Оказалось, что после проникновения ДНК, выделенной из вирулентных (вызывающих заболевание) клеток, некоторое количество клеток невирулентной формы образовало капсулу, причем эта способность передавалась по наследству. ДНК—это полимер, мономерами которого являются дезоксирибонуклеотиды. В их состав входят углевод дезоксирибоза, фосфорная кислота и азотистые основания четырех типов: два пуриновых — аденин и гуанин и два пиримидиновых — тимин и цитозин. Приблизительные определения показывают, что молекулярная масса ДНК достигает величины 106—109.

А - часть полинуклеотидной цепи молекулы ДНК;

Б - репликация ДНК (А - аденин, Г - гуанин, Ц - цитозин, Т- тимин)

Основные представления о структуре ДНК были сформулированы в 1953 г. Дж. Уотсоном и Ф. Криком. Молекула ДНК состоит из двух полинуклеотидных цепочек, скрепленных между собой водородными связями. Каркас полинуклеотидных цепочек, входящих в состав ДНК, представляет чередование дезоксирибозы и фосфорной кислоты. Азотистые основания, противостоящие друг другу в полинуклеотидных цепочках, парны: пуриновому основанию соответствует пиримидиновое, аденину — тимин, гуанину — цитозин. Таким образом, две полинуклеотидные цепочки, входящие в состав ДНК, соответственны, или комплементарны, друг другу, число пуриновых оснований равно числу пиримидиновых (правило Чаргаффа). У каждой цепочки молекулы ДНК имеются два конца: один конец заканчивается пятым, а другой — третьим углеродным атомом пентозы (они обозначаются 3' и 5' конец). Цепочки, составляющие молекулы ДНК, антипараллельны, поскольку составляющие их цепи имеют противоположную направленность. В одной цепочке нуклеотиды связаны в направлении 5' 3', а в другой — 3'5'. Полинуклеотидные цепочки имеют общую ось и образуют двойную спираль. Каждый виток спирали включает 10 пар азотистых оснований. Шаг спирали составляет 3,4 нм, ширина спирали — 2 нм, длина спирали — несколько десятков тысяч нанометров. Специфичность ДНК определяется последовательностью азотистых оснований в ее цепочке. Рассмотренная модель позволяет объяснить важнейшее свойство ДНК — способность к самовоспроизведению. Этот процесс называется репликацией или редупликацией. Опыты М. Мезелсона и Ф. Сталя (1958) показали, что самовоспроизведение ДНК происходит полуконсервативным способом. В этих опытах несколько поколений бактерий кишечной палочки (Escherichia coli) выращивали на среде, содержащей меченый азот (15N). Через несколько поколений ДНК, входящая в состав клеток бактерий, содержала этот изотоп. Включение 15N в ДНК повысило ее плотность (тяжелая ДНК). Клетки, содержащие тяжелую ДНК, помещали на среду, включающую 14N. После удвоения клеток, т. е. в первом поколении, вся выделенная ДНК оказалась полутяжелой (одна половина содержала 15N, а другая половина— 14N). На основании этого была создана схема воспроизведения ДНК, согласно которой в определенный момент жизни клетки цепочки ДНК расходится и на каждой материнской, как на матрице, из веществ клетки строится соответственная (комплементарная) дочерняя цепочка.

Образование полинуклеотидных цепочек ДНК происходит из трифосфонуклеотидов. Синтез ДНК идет от 5' к 3' концу и катализируется специальными ферментами. Главнейшие из них ДНК-полимеразы, которые последовательно наращивают цепь ДНК, присоединяя к ней дезоксирибонуклеотидные звенья в направлении 5' — к 3'. Именно ДНК-полимеразы на каждом шаге выбирают нужный мономер из четырех, тот, который комплиментарен мономеру материнской цепи ДНК. Однако для начала работы ДНК-полимераз необходима полинуклеотидная цепь рибонуклеиновой кислоты (РНК), называемая затравка. РНК-затравку синтезирует из рибонуклеотидтрифосфатов фермент ДНК-праймаза. В синтезе принимают участие и другие ферменты. ДНК-хеликазы разрывают цепи ДНК, что дает возможность ДНК-полимеразе осуществлять процесс синтеза. ДНК-топоизомеразы раскручивают цепи ДНК и молекулы дестабилизирующего белка, который не позволяет сомкнуться одиночным цепям ДНК. Фермент ДНК-лигаза осуществляет сшивку двух концов цепочки ДНК. Таким образом, в результате совместного действия многих белков осуществляется процесс репликации ДНК, лежащий в основе размножения и развития организма, передачи наследственных свойств. В ДНК заложена информация о структуре белков, свойственных каждому живому организму. Участок ДНК, содержащий всю информацию о программируемом белке, называют ген. Однако в настоящее время установлено, что информационное содержание ДНК значительно богаче. Кроме структурных генов, кодирующих первичную структуру белка, существуют регуляторные участки, которые не кодируют структуру биополимеров, но необходимы для реализации наследственной информации. ДНК содержит информацию и о структуре молекул РНК. Детальная расшифровка структуры ДНК открывает возможность для глубокого проникновения в суть эволюционного процесса. Степень родства организмов может быть установлена с большой точностью путем анализа фрагментов их нуклеиновых кислот. Эти исследования были начаты под руководством академика А.Н. Белозерского.

В 1928 г. Ф. Гриффит впервые получил^ доказательства воз­можной передачи наследственных задатков от одной бактерии к другой. Ученый вводил мышам вирулентный капсульный и ави-рулентный бескапсульный штаммы пневмококков. При введении вирулентного штамма мыши заболевали пневмонией и погибали. При введении авирулентного штамма мыши оставались живыми. При введении вирулентного капсульного штамма, убитого нагре­ванием, мыши также не погибали. В следующем опыте он ввел смесь живой культуры авирулентного бескапсульного штамма со штаммом убитого нагреванием вирулентного капсульного и по­лучил неожиданный результат — мыши заболели пневмонией и погибли. Из крови погибших животных были выделены бакте­рии, которые обладали вирулентностью и были способны обра­зовать капсулу. Следовательно, живые бактерии авирулентного бескапсульного штамма трансформировались — приобрели свой­ства убитых болезнетворных бактерий. В дальнейшем другими учеными были подтверждены результаты опытов Ф. Гриффита в условиях пробирки.Основываясь на этих опытах,в1944 г.

О. Эвери и его сотрудники Мак-Леод и Мак-Карти изучили роль разных веществ клетки в явлениях трансформации и получили убедительные доказательства того, что трансформирующим фак­тором является дезоксирибонуклеиновая кислота (ДНК). Было установлено, что под действием дезоксирибонуклеазы — фермен­та, специфически разрушающего ДНК, активность трансформи­рующего фактора исчезла. В то же время рибонуклеаза и протео-литические ферменты не изменяли биологической активности трансформирующего фактора.

Работы Грегора Менделя

В 1865 году монах Грегор Мендель (занимавшийся изучением гибридизации растений в Августинском монастыре в Брюнне (Брно), ныне на территорииЧехии) обнародовал на заседании местного общества естествоиспытателей результаты исследований о передаче по наследству признаков при скрещивании гороха (работа Опыты над растительными гибридами была опубликована в трудах общества в 1866 году). Мендель показал, что некоторые наследственные задатки не смешиваются, а передаются от родителей к потомкам в виде дискретных (обособленных) единиц. Сформулированные им закономерности наследования позже получили название законов Менделя. При жизни его работы были малоизвестны и воспринимались критически (результаты опытов на другом растении, ночной красавице, на первый взгляд, не подтверждали выявленные закономерности, чем весьма охотно пользовались критики его наблюдений).

Законы Менделя

1.      Закон единообразия гибридов первого поколения

2.      Закон расщепления признаков

3.      Закон независимого наследования признаков

Следует отметить, что сам Грегор Мендель не формулировал свои выводы в качестве «законов» и не присваивал им никаких номеров. Более того, многие «открытые» им факты были давно и хорошо известны, на что сам Мендель указывает в своей работе.

К середине XIX века было открыто явление доминантности (О. Саржэ, Ш. Ноден и др.). Часто все гибриды первого поколения похожи друг на друга (единообразие гибридов) и по данному признаку все они идентичны одному из родителей (его признак доминирует). Они же показали, что рецессивные (не проявляющиеся у гибридов первого поколения) признаки не исчезают; при скрещивании гибридов между собой во втором поколении часть гибридов имеет рецессивные признаки («возврат к родительским формам»). Было также показано (Дж. Госс и др.), что среди гибридов второго поколения с доминантным признаком встречаются разные — дающие и не дающие расщепление при самоопылении. Однако никто из этих исследователей не смог дать своим наблюдениям теоретическое обоснование.

Главной заслугой Менделя было создание теории наследственности, которая объясняла изученные им закономерности наследования.

Методы и ход работы Менделя

Эксперимент Менделя с горохом

                   Мендель изучал, как наследуются отдельные признаки.

                   Мендель выбрал из всех признаков только альтернативные — такие, которые имели у его сортов два чётко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило чётко установить общие закономерности наследования.

                   Мендель спланировал и провёл масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученные гибриды скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме — самоопылитель, но легко проводить искусственную гибридизацию.

                   Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Закон единообразия гибридов первого поколения

Схема первого и второго закона Менделя. 1) Растение с белыми цветками (две копии рецессивного аллеля w) скрещивается с растением с красными цветками (две копии доминантного аллеля R). 2) У всех растений-потомков цветы красные и одинаковый генотип Rw. 3) При самооплодотворении у 3/4 растений второго поколения цветки красные (генотипы RR + 2Rw) и у 1/4 — белые (ww).

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготностьособей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак,гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный,доминантный), всегда подавлял другой (рецессивный).

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования. Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот.

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека, где А и В — доминантные гены, а 0 — рецессивный. По этой системе генотип 00 определяет первую группу крови, АА и А0 — вторую, ВВ и В0 — третью, а АВ будет определять четвёртую группу крови. Т.о. всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвёртая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Явления кодоминирования и неполного доминирования признаков слегка видоизменяет первый закон Менделя: «Гибриды первого поколения от скрещивания чистых линий особей с противоположными признаками всегда одинаковы по этому признаку: проявляют доминирующий признак, если признаки находятся в отношении доминирования, или смешанный (промежуточный) признак, если они находятся в отношении кодоминирования (неполного доминирования)».

Закон расщепления признаков

[Определение

Закон расщепления, или второй закон Менделя: при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Информация о работе Доказательство роли днк в наследственности