Генератор

Автор работы: Пользователь скрыл имя, 17 Ноября 2011 в 20:21, реферат

Краткое описание

Генератор служит для преобразования механической энергии в электрическую, необходимую для питания всех приборов электрооборудования автомобиля (кроме стартера) и для заряда аккумуляторной батареи.
Турбогенераторы (ТГ) представляют собой основной вид генерирующего оборудования, обеспечивающего свыше 80% общего мирового объема выработки электроэнергии. Одновременно ТГ являются и наиболее сложным типом электрических машин, в которых тесно сочетаются проблемы мощности, габаритов, электромагнитных характеристик, нагрева, охлаждения, статической и динамической прочности элементов конструкции. Обеспечение максимальной эксплуатационной надежности и экономичности ТГ является центральной научно-технической проблемой.

Содержимое работы - 1 файл

Генератор.docx

— 39.53 Кб (Скачать файл)

  Сердечник статора

  Сердечник статора собран на клиньях из сегментов  электротехнической стали толщиной 0.5 мм и вдоль оси разделён вентиляционными  каналами на пакеты.

  Поверхность сегментов покрыта изоляционным лаком.

  Клинья  сердечника статора приварены к  поперечным кольцам корпуса.

  Спрессованный сердечник статора стягивается  нажимными кольцами из немагнитной  стали. Зубцовая зона крайних пакетов уплотнена нажимными пальцами из не магнитной стали, установленными между сердечником и нажимными кольцами.

  Для демпфирования электромагнитных потоков рассеяния лобовых частей обмотки статора под нажимными кольцами установлены медные экраны.

  Для уменьшения передачи на корпус и фундамент  стопериодных колебаний сердечника в клиньях статора выполнены  продольные прорези, что создаёт  упругую связь сердечника статора  с корпусом.

  Обмотка статора

  Обмотка статора-трехфазная, двухслойная, с укороченным шагом, стержневая, с транспозицией элементарных проводников. Лобовые части обмотки-корзиночного типа. Стержни обмотки сплетены из сплошных и полых элементарных изолированных проводников и в пазах сердечника закрепляются специальными клиньями.

  Для охлаждения обмотки по полым проводникам  проходит дистиллированная вода.

  На  концах стержней припаяны наконечники  для подвода воды к полым проводникам. Наконечники припаяны к стержням твёрдым припоем типа ПСр. Электрическое соединение стержней осуществляется медным хомутом и клиньями с пайкой мягким припоем типа ПОС.

  Начала  и концы обмотки выведены наружу через концевые выводы. Обозначение  линейных и нулевых концевых выводов  указано на монтажном чертеже, входящем в комплект эксплуатационной документации.

  Для подвода и слива охлаждающей  воды из обмотки статора имеются  кольцевые коллекторы, установленные  на изоляторах. Соединение коллекторов  со стержнями обмотки осуществляется водосоединительными трубками из изоляционного материала. Охлаждающая вода в обмотке проходит по двум стержням, шинам и выводам, соединенным последовательно. Для контроля заполнения коллекторов водой и для выпуска из них воздуха в верхних точках коллекторов установлены дренажные трубки, выведенные из корпуса статора наружу.

  В период эксплуатации дренажные трубки должны быть открыты с минимальным  сливом для непрерывного удаления воздуха  из системы охлаждения обмотки статора. Контроль проходимости дистиллята в  стержнях обмотки статора осуществляется измерением температуры термосопротивлениями, заложенными под клинья в каждом пазу сердечника статора.

  Ротор

  Ротор изготовлен из цельной поковки специальной  стали, обеспечивающей его механическую прочность при всех режимах работы генератора.

  Обмотка ротора выполнена из полосовой меди с присадкой серебра. Её охлаждение осуществляется непосредственно водородом  по схеме самовентиляции с забором  газа из зазора машины.

  Дюралюминиевые  клинья, удерживающие обмотку в пазах, имеют заборные и выходные отверстия  для охлаждающего газа, совпадающие  с боковыми каналами, выфрезерованными в катушках.

  Пазовая и витковая изоляции катушек выполнены из прессованного стеклополотна на теплостойком лаке. Контактные кольца, насаженные в горячем состоянии на промежуточную, изолированную от них втулку, установлены за подшипником со стороны возбудителя.

  Стержни токоподвода, расположенные в центральном отверстии ротора, соединяются с обмоткой и контактными кольцами с помощью изолированных гибких шин и специальных изолированных болтов, которые для обеспечения газоплотности ротора имеют уплотнения сальникового типа.

  Роторные  бандажи, выполненные из специальной  немагнитной стали, имеют горячепрессовую посадку на центрирующую заточку бочки ротора.

  От  осевых перемещений бандажное кольцо удерживается кольцевой шпонкой  и гайкой, навинченной на носик  бандажа с наружной стороны.

  Для повышения термической стойкости  ротора против воздействия токов  обратной последовательности, замыкающихся по торцам бочки ротора, поверх изоляции лобовых частей обмотки уложены  внахлёст короткозамыкающие кольца в виде двухслойных медных гребёнок. Зубья гребёнок располагаются под клинья в пазах с обмоткой и в специальных пазах, выфрезерованных в больших зубцах бочки.

  Лобовые части обмотки ротора изолированы  от бандажей и центрирующих колец  изоляционными сегментами.

  Опорные подшипники

  Опорный подшипник генератора, установленный  со стороны возбудителя, является подшипником  стоякового типа и имеет шаровой  самоустанавливающийся вкладыш.

  Смазка  подшипника-принудительная. Масло подаётся под избыточным давлением из напорного маслопровода турбины.

  В конструкции подшипника предусмотрен дистанционный контроль температуры  баббита вкладыша и сливного масла  с помощью термометров сопротивления. Визуальный контроль слива масла  производится через стекло в патрубке.

  На  удлинённой части основания стояка подшипника установлена щеточная траверса, которая служит для подвода тока возбуждения к контактным кольцам  ротора.

  Для устранения подшипниковых токов  предусмотрена изоляция этого подшипника от фундамента и от всех маслопроводов.

  На  стойке каркаса траверсы предусмотрена  установка изолированной от корпуса  щётки, которая используется при  измерении сопротивления изоляции обмотки ротора и для введения защиты от двойного замыкания обмотки  ротора на корпус.

  Опорный подшипник генератора со стороны  турбины поставляется турбинным  заводом.

  Уплотнения  вала

  Для предотвращения выхода водорода из статора  на наружных щитах генератора установлены  двухкамерные масляные уплотнения вала торцевого типа. В уплотнениях  этого типа вкладыш с баббитовой заливкой постоянно прижимается  к упорному кольцу вала ротора давлением  прижимного масла и следует за всеми перемещениями ротора вдоль  оси.

  Уплотняющее масло под давлением, превышающим  давление газа в генераторе, подаётся в напорную камеру и оттуда через  отверстия во вкладыше поступает  в кольцевую канавку, проточенную  в баббитовой заливке вкладыша. Затем  масло заполняет радиальные канавки  и клиновые скосы и растекаясь в обе стороны от кольцевой канавки, образует при вращении сплошную пленку, которая препятствует утечке газа из корпуса генератора.

  Камеры  уплотняющего и прижимного масла, образованные между корпусом и вкладышем, уплотнены  резиновыми шнурами, помещенными в  кольцевые канавки на поверхности  вкладыша.

  Для защиты внутренней полости статора  от попадания масла предусмотрены  маслоуловители, установленные на наружных щитах между уплотнением вала и внутренней полостью статора, и  дополнительные камеры в вентиляторных щитах.

  Для устранения подшипниковых токов  корпус уплотнения и маслоуловитель со стороны возбудителя изолированы  от наружного щита и маслопроводов.

  Необходимое давление уплотняющего и прижимного масла обеспечивается регуляторами, входящими в систему маслоснабжения.

  Вентиляция

  Вентиляция  генератора осуществлена по замкнутому циклу. Газ охлаждается газоохладителями, встроенными в корпус статора. Необходимый напор газа создаётся двумя вентиляторами, установленными на валу ротора.

  3. Указания по технике  безопасности

  На  электростанциях, оборудованных генераторами с водородным охлаждением, руководствоваться  ведомственными правилами по технике  безопасности.

  При работе генератора с водородным охлаждением  в какой-то степени происходить  утечка водорода в атмосферу. Образовавшаяся газовая смесь может загореться, а при содержании в ней пяти и более процентов водорода- взорваться.

  Чтобы исключить возможность пожаров  и взрывов во время монтажа, при  подготовке к работе и в эксплуатации, принять меры к тому, чтобы поблизости от генератора не было невентилируемых  объемов, куда может проникать водород.

  При осуществлении вентиляции этих объёмов  исключить возможность попадания  водорода на узлы агрегата, работающего  с искрением или имеющего высокую  температуру.

  Допуск  обслуживающего персонала в корпус генератора производить после того, как из него полностью вытеснен углекислый газ и проведен химический анализ воздуха. 

  Заключение

  В настоящее время электроэнергия в основном вырабатывается на тепловых, гидравлических и атомных электростанциях. Из них преимущественное развитие получили тепловые электростанции, что объясняется  следующим. Стоимость электроэнергии, вырабатываемой гидроэлектростанциями, значительно ниже стоимости электроэнергии, вырабатываемой тепловыми станциями. Однако по размерам капиталовложений гидроэлектростанции в несколько  раз дороже тепловых и сооружаются  они более длительное время. Поэтому  наращивание мощностей для покрытия всё возрастающих потребностей в  электроэнергии более целесообразно  за счет строительства тепловых электростанций. В этом случае, вместе с более  быстрым ростом энерговооружаемости ускоряется рост производительности труда во всех народного хозяйства, что оказывает дополнительное влияние на сокращение сроков окупаемости производимых затрат. генератор котельный циркуляция маслоснабжение

  Изложенное подтверждает актуальность установки на котельных турбогенераторов, главным образом, как для покрытия собственных нужд котельных, так и отдачи внешним потребителям электроэнергии.

Информация о работе Генератор