Схема тепловой электрической станции (ТЭС/ТЭЦ)

Автор работы: Пользователь скрыл имя, 16 Марта 2012 в 17:53, реферат

Краткое описание

На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

Содержимое работы - 1 файл

ТЭС.doc

— 1.21 Мб (Скачать файл)

Схема тепловой электрической станции (ТЭС/ТЭЦ)

 

Тепловая электрическая станция (рисунок общего вида)

1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос.

На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

Обозначения на схеме ТЭС:

1.       Топливное хозяйство;

2.       подготовка топлива;

3.       котел;

4.       промежуточный пароперегреватель;

5.       часть высокого давления паровой турбины (ЧВД или ЦВД);

6.       часть низкого давленияпаровой турбины (ЧНД или ЦНД);

7.       электрический генератор;

8.       трансформатор собственных нужд;

9.       трансформатор связи;

10.   главное распределительное устройство;

11.   конденсатор;

12.   конденсатный насос;

13.   циркуляционный насос;

14.   источник водоснабжения (например, река);

15.   подогреватель низкого давления (ПНД);

16.   водоподготовительная установка (ВПУ);

17.   потребитель тепловой энергии;

18.   насос обратного конденсата;

19.   деаэратор;

20.   питательный насос;

21.   подогреватель высокого давления (ПВД);

22.   шлакозолоудаление;

23.   золоотвал;

24.   дымосос (ДС);

25.   дымовая труба;

26.   дутьевой вентилятов (ДВ);

27.   золоуловитель.

Описание технологической схемы ТЭС:

Обобщая все вышеописанное, получаем состав тепловой электростанции:

        топливное хозяйство и система подготовки топлива;

        котельная установка: совокупность самого котла и вспомогательного оборудования;

        турбинная установка: паровая турбина и ее вспомогательное оборудование;

        установка водоподготовки и конденсатоочистки;

        система технического водоснабжения;

        система золошлокоудаления (для ТЭС, работающих, на твердом топливе);

        электротехническое оборудование и система управления электрооборудованием.

Топливное хозяйство в зависимости от вида используемого на станции топлива включает приемно-разгрузочное устройство, транспортные механизмы, топливные склады твердого и жидкого топлива, устройства для предвари-тельной подготовки топлива (дробильные установки для угля). В состав ма-зутного хозяйства входят также насосы для перекачки мазута, подогреватели мазута, фильтры.

Подготовка твердого топлива к сжиганию состоит из размола и сушки его в пылеприготовительной установке, а подготовка мазута заключается в его подогреве, очистке от механических примесей, иногда в обработке спецприсадками. С газовым топливом все проще. Подготовка газового топлива сводится в основном к регулированию давления газа перед горелками котла.

Необходимый для горения топлива воздух подается в топочное пространство котла дутьевыми вентиляторами (ДВ). Продукты сгорания топлива — дымовые газы — отсасываются дымососами (ДС) и отводятся через дымовые трубы в атмосферу. Совокупность каналов (воздуховодов и газоходов) и различных элементов оборудования, по которым проходит воздух и дымовые газы, образует газовоздушный тракт тепловой электростанции (теплоцентрали). Входящие в его состав дымососы, дымовая труба и дутьевые вентиляторы составляют тягодутьевую установку. В зоне горения топлива входящие в его состав негорючие (минеральные) примеси претерпевают химико-физические превращения и удаляются из котла частично в виде шлака, а значительная их часть выносится дымовыми газами в виде мелких частиц золы. Для защиты атмосферного воздуха от выбросов золы перед дымососами (для предотвращения их золового износа) устанавливают золоуловители.

Шлак и уловленная зола удаляются обычно гидравлическим способом на золоотвалы.

При сжигании мазута и газа золоуловители не устанавливаются.

При сжигании топлива химически связанная энергия превращается в тепловую. В результате образуются продукты сгорания, которые в поверхностях нагрева котла отдают теплоту воде и образующемуся из нее пару.

Совокупность оборудования, отдельных его элементов, трубопроводов, по которым движутся вода и пар, образуют пароводяной тракт станции.

В котле вода нагревается до температуры насыщения, испаряется, а образующийся из кипящей котловой воды насыщенный пар перегревается. Из котла перегретый пар направляется по трубопроводам в турбину, где его тепловая энергия превращается в механическую, передаваемую на вал турбины. Отработавший в турбине пар поступает в конденсатор, отдает теплоту охлаждающей воде и конденсируется.

На  современных  ТЭС  и  ТЭЦ с агрегатами единичной мощностью 200 МВт и выше применяют промежуточный перегрев пара. В этом случае турбина имеет две части: часть высокого и часть низкого давления. Отработавший в части высокого давления турбины пар направляется в промежуточный перегреватель, где к нему дополнительно подводится теплота. Далее пар возвращается в турбину (в часть низкого давления) и из нее поступает в конденсатор. Промежуточный перегрев пара увеличивает КПД турбинной установки и повышает надежность ее работы.

Из конденсатора конденсат откачивается конденсационным насосом и, пройдя через подогреватели низкого давления (ПНД), поступает в деаэратор. Здесь он нагревается паром до температуры насыщения, при этом из него выделяются и удаляются в атмосферу кислород и углекислота для предотвращения коррозии оборудования. Деаэрированная вода, называемая питательной, насосом подается через подогреватели высокого давления (ПВД) в котел.

Конденсат в ПНД и деаэраторе, а также питательная вода в ПВД подогреваются паром, отбираемым из турбины. Такой способ подогрева означает возврат (регенерацию) теплоты в цикл и называется регенеративным подогревом. Благодаря ему уменьшается поступление пара в конденсатор, а следовательно, и количество теплоты, передаваемой охлаждающей воде, что приводит к повышению КПД паротурбинной установки.

Совокупность элементов, обеспечивающих конденсаторы охлаждающей водой, называется системой технического водоснабжения. К ней относятся: источник водоснабжения (река, водохранилище, башенный охладитель — градирня), циркуляционный насос, подводящие и отводящие водоводы. В конденсаторе охлаждаемой воде передается примерно 55%  теплоты пара, поступающего в турбину; эта часть теплоты не используется для выработки электроэнергии и бесполезно пропадает.

Эти потери значительно уменьшаются, если отбирать из турбины частично отработавший пар и его теплоту использовать для технологических нужд промышленных предприятий или подогрева воды на отопление и горячее водоснабжение. Таким образом, станция становится теплоэлектроцентралью (ТЭЦ), обеспечивающей комбинированную выработку электрической и тепловой энергии. На ТЭЦ устанавливаются специальные турбины с отбором пара — так называемые теплофикационные. Конденсат пара, отданного тепловому потребителю, возвращается на ТЭЦ насосом обратного конденсата.

На ТЭС существуют внутренние потери пара и конденсата, обусловленные неполной герметичностью пароводяного тракта, а также невозвратным расходом пара и конденсата на технические нужды станции. Они составляют приблизительно 1 — 1,5%  от общего расхода пара на турбины.

На ТЭЦ могут быть и внешние потери пара и конденсата, связанные с отпуском теплоты промышленным потребителям. В среднем они составляют 35 — 50%. Внутренние и внешние потери пара и конденсата восполняются предварительно обработанной в водоподготавливающей установке добавочной водой.

Таким образом, питательная вода котлов представляет собой смесь турбинного конденсата и добавочной воды.

Электротехническое хозяйство станции включает электрический генератор, трансформатор связи, главное распределительное устройство, систему электроснабжения собственных механизмов электростанции через трансформатор собственных нужд.

Система управления осуществляет сбор и обработку информации о ходе технологического процесса и состоянии оборудования, автоматическое и дистанционное управление механизмами и регулирование основных процессов, автоматическую защиту оборудования.

История развития паровых котлов

Паровой котел – устройство, имеющее топку, обогреваемое газообразными продуктами сжигаемого в топке органического топлива и предназначенное для получения пара с давлением выше атмосферного, используемого вне самого устройства. Рабочим телом подавляющего большинства паровых котлов, является вода.

Упоминания о паровом котле как о парогенераторе, отделённом от топки, встречаются в работах учёных: итальянца Дж. делла Порта (1601), француза С. де Ко (1615), англичанина Э. С. Вустера (1663). Однако, промышленное применение парового котла началось на рубеже XVII и XVIII вв. в связи с бурным развитием горнозаводской и угледобывающей промышленности. Ранние конструкции паровых котлов по форме напоминали шар или же котлы для варки пищи, сначала их изготовляли из меди, а затем из чугуна. Одним из первых «настоящих» паровых котлов считают котёл Д. Папена, предложенный им в 1680.

 

Паровой котёл И. И. Ползунова (1765)

Конструкции современных паровых котлов сложились в процессе изменения конструктивных форм выпускавшегося до 2-й половины XIX в. простейшего цилиндрического парового котла, паропроизводительностью 0,4 т/ч; поверхность нагрева этого котла не превышала 25 м2, давление пара 1Мн/м2 (10 кгс/см2), а КПД 30%. Развитие паровых котлов шло по двум направлениям: увеличения числа потоков газов (газотрубные котлы) и увеличения числа потоков воды и пара (водотрубные котлы). Первые газотрубные паровые котлы представляли собой цилиндрические сосуды, в которые первоначально вставляли 1, 2 или 3 трубы большого диаметра (жаровые трубы), а впоследствии десятки труб значительно меньшего диаметра (дымогарные трубы), по которым проходил газ.

Увеличение поверхности нагрева газотрубных паровых котлов происходило в габаритах первоначального цилиндрического котла или даже в меньших габаритах. Следствием этого явились некоторое повышение паропроизводительности котла (при незначительном увеличении суммарной массы), а также улучшение передачи тепла от дымовых газов к поверхности нагрева, приводившее к снижению температуры газов на выходе из парового котла, то есть к повышению КПД.

Газотрубные паровые котлы отличались от цилиндрических относительно малыми размерами и высоким КПД (60%), однако паропроизводительность их, ограничиваемая габаритами, не превышала нескольких т/ч, а конструкционные особенности ограничивали давление пара в котле 1,5—1,8Мн/м2. Поэтому газотрубные паровые котлы сохранились только на транспортных установках (паровозы, пароходы), а из стационарных установок они полностью вытеснены водотрубными котлами.

Создание водотрубных паровых котлов шло путём увеличения числа цилиндров, составлявших котёл, сначала до 3—9 относительно больших диаметров (батарейные котлы), а затем до десятков и сотен цилиндров небольших диаметров, превратившихся в кипятильные, а в дальнейшем и в экранные трубы.

Увеличение поверхности нагрева водотрубных паровых котлов сопровождалось увеличением их габаритов, и в первую очередь высоты, но вместе с тем во много раз возрастала паропроизводительность, уменьшался удельный расход металла, всё больше повышались параметры пара и КПД.

Со 2-й половины XIX в. выпускались камерные и секционные горизонтально-водотрубные паровые котлы с естественной циркуляцией, у которых кипятильные трубы были расположены с наклоном в 10—12° к горизонту. Камерный паровой котел состоял из одного или нескольких барабанов, подсоединённых к ним сборных камер и пучков кипятильных труб, ввальцованных в камеры. Его поверхность нагрева 350 м2, паропроизводительность 10 т/ч при давлении 1,5Мн/м2. Замена плоских камер отдельными секциями, в которые ввальцовывали по одному ряду труб, позволила повысить давление пара, а с увеличением числа секций, из которых собирался котёл, поверхность нагрева достигла 1400 м2.

В 1893 русский инженер В. Г. Шухов создал водотрубный паровой котел, который состоял из продольного барабана и трубчатых батарей, представляющих собой 2 пучка труб, ввальцованных в плоские стенки коротких цилиндрических камер; в зависимости от числа батарей (от 1 до 5) поверхность нагрева котла могла изменяться от 62 до 310 м2, а паропроизводительность от 1 до 7 т/ч при давлении пара до 1,3Мн/м2. Конструкцией котла Шухова была разрешена задача унификации отдельных элементов и их размеров.

В начале XX в. появились вертикально-водотрубные котлы, которые за очень короткое время были доведены до высокой степени совершенства. В 1913 паропроизводительность этих котлов не превышала 15 т/ч, а давление пара 1,8Мн/м2, к 1974 в СССР паропроизводительность их достигла 2500 т/ч при давлении 24 Мн/м2, а в США 4400 т/ч при том же давлении. Вначале вертикально-водотрубные паровые котлы состояли из одного верхнего и одного нижнего барабанов, соединённых пучком прямых труб. Но уже в 20-х гг. XX в. они были полностью вытеснены более надёжными котлами с изогнутыми трубами. Типовой конструкцией в этой группе паровых котлов являлся трёхбарабанный котёл Ленинградского металлического завода (ЛМЗ), выпускавшийся в 30-х гг. XX в. Поверхность нагрева этих котлов была от 650 до 2500 м2, паропроизводительность от 50 до 180 т/ч. Паровой котел был оборудован камерной топкой для сжигания угольной пыли. 

Пылеугольные топки внедрявшиеся в те же годы, очень быстро получили чрезвычайно широкое распространение и, с одной стороны, сильно повлияли на развитие конструкций паровых котлов, значительно повысив их паропроизводительность, а с другой — позволили весьма эффективно использовать любые низкосортные местные угли. 

Внедрение камерных топок привело к созданию топочных экранов, которые представляют собой испарительные трубы, расположенные на стенах топочной камеры. Первоначально экраны закрывали только часть стен и предназначались для защиты обмуровки от непосредственного воздействия пламени, которое приводило к шлакованию топки и разрушению обмуровки.

Постепенно экраны стали закрывать всё большую часть стен топок, а современные паровые котлы имеют полностью экранированные топки. Экраны, воспринимающие тепло, излучаемое пламенем и горячими дымовыми газами (радиационные поверхности нагрева), работают более интенсивно, чем кипятильные трубы, находящиеся в зоне более низких температур (конвективные поверхности нагрева). Поэтому поверхность нагрева экранированных котлов значительно меньше, чем у неэкранированных такой же паропроизводительности; в котлах со сплошным экранированием топочной камеры, называемых радиационными котлами, кипятильный пучок почти отсутствует. В 30-е гг. в СССР Л. К. Рамзиным были сконструированы водотрубные котлы с принудительной циркуляцией (прямоточный котёл).

 

Конструкции паровых котлов 

 

Цилиндрический паровой котел 

1. барабан;
2. колосниковая решётка.

 

Жаротрубный паровой котел

1. барабан;
2. колосниковая решётка;
3. жаровая труба;
9. газоход.

 

Жаротрубно-дымогарный паровой котел

1. барабан;
3. жаровая труба;
4. дымогарная труба.

 

Камерный горизонтально-водотрубный

паровой котел

1. барабан;
2. колосниковая решётка;
5. сборная камера;
6. пароперегреватель.

 

Камерный горизонтально-водотрубный

паровой котел

конструкции В. Г. Шухова

1. барабан;
2. колосниковая решётка;
5. сборная камера;
6. пароперегреватель.

 

Двухсекционный

горизонтально-водотрубный 

паровой котел

1. барабан;
5. сборная камера;
6. пароперегреватель.

 

Вертикально-водотрубный

паровой котел

с гнутыми трубами

1. барабан;
6. пароперегреватель.

 

Вертикально-водотрубный

паровой котел

с П-образной компоновкой

1. барабан;
6. пароперегреватель;
7. водяной экономайзер;
8. воздухоподогреватель.

 

Вертикально-водотрубный

паровой котел

с Т-образной компоновкой

1. барабан;
6. пароперегреватель;
7. водяной экономайзер;
8. воздухоподогреватель.

 

Прямоточный паровой котел

конструкции Л. К. Рамзина

6. пароперегреватель;
7. водяной экономайзер;
8. воздухоподогреватель.  

 

Прямоточный паровой

котел котёл

ТПП-210А (СССР)

6. пароперегреватель;
7. водяной экономайзер;
8. воздухоподогреватель. 

 

В современных паровых котлах организуется факельное сжигание топлива в камерной топке, представляющей собой призматическую вертикальную шахту. Факельный способ сжигания характеризуется непрерывным движением топлива вместе с воздухом и продуктами сгорания в топочной камере.

Топливо и необходимый для его сжигания воздух вводятся в топку котла через специальные устройства — горелки. Топка в верхней части соединяется с призматической вертикальной шахтой (иногда с двумя), называемой по основному виду проходящего теплообмена конвективной шахтой.

В топке, горизонтальном газоходе и конвективной шахте находятся поверхности нагрева, выполняемые в виде системы труб, в которых движется рабочая среда. В зависимости от преимущественного способа передачи тепла к поверхностям нагрева их можно подразделить на следующие виды: радиационные, радиационно-конвективные, конвективные.

В топочной камере по всему периметру и по всей высоте стен обычно расположены трубные плоские системы — топочные экраны, являющиеся радиационными поверхностями нагрева.

Рис. 1. Схема парового котла ТЭС.

1 — топочная камера (топка); 2 — горизонтальный газоход; 3 — конвективная шахта; 4 — топочные экраны; 5 — потолочные экраны; 6 — спускные трубы; 7 — барабан; 8 — радиационно-конвективный пароперегреватель; 9 — конвективный пароперегреватель; 10 — водяной экономайзер; 11 — воздухоподогреватель; 12 — дутьевой вентилятор; 13 — нижние коллекторы экранов; 14 — шлаковый комод; 15 — холодная коронка; 16 — горелки. На схеме не показаны золоуловитель и дымосос.

В современных конструкциях котлов топочные экраны изготавливают либо из обычных труб (рис. 2, а), либо из плавниковых труб, сваренных между собой по плавникам и образующих сплошную газоплотную оболочку (рис. 2,б).

Аппарат, в котором вода нагревается до температуры насыщения, называется экономайзером; образование пара происходит в парообразующей (испарительной) поверхности нагрева, а его перегрев — в пароперегревателе.

Рис. 2. Схема выполнения топочных экранов

а - из обычных труб;  б — из плавниковых труб

Система трубных элементов котла, в которых движутся питательная вода, пароводяная смесь и перегретый пар, образует, как уже указывалось, его водопаровой тракт.

Для непрерывного отвода теплоты и обеспечения приемлемого температурного режима металла поверхностей нагрева организуется непрерывное движение в них рабочей среды. При этом вода в экономайзере и пар в пароперегревателе проходят через них однократно. Движение же рабочей среды через парообразующие (испарительные) поверхности нагрева может быть как однократным, так и многократным.

В первом случае котел называется прямоточным, а во втором — котлом с многократной циркуляцией (рис. 3).

 

Рис. 3. Схема водопаровых трактов котлов

а — прямоточная схема; б — схема с естественной циркуляцией; в — схема с многократно-принудительной циркуляцией; 1 — питательный насос; 2 — экономайзер; 3 — коллектор; 4 — парообразующие трубы; 5 — пароперегреватель; 6 — барабан; 7 — опускные трубы; 8 — насос многократно-принудительной циркуляции.

Водопаровой тракт прямоточного котла представляет собой разомкнутую гидравлическую систему, во всех элементах которой рабочая среда движется под напором, создаваемым питательным насосом. В прямоточных котлах нет четкого разделения экономайзерной, парообразующей и пароперегревательных зон. Прямоточные котлы работают на докритическом и сверхкритическом давлении.

В котлах с многократной циркуляцией существует замкнутый контур, образованный системой обогреваемых и необогреваемых труб, объединенных вверху барабаном, а внизу — коллектором. Барабан представляет собой цилиндрический горизонтальный сосуд, имеющий водяной и паровой объемы, которые разделяются поверхностью, называемой зеркалом испарения. Коллектор — это заглушенная с торцов труба большого диаметра, в которую по длине ввариваются трубы меньшего диаметра.

В котлах с естественной циркуляцией (рис. 3,б) питательная вода, подаваемая насосом, подогревается в экономайзере и поступает в барабан. Из барабана по опускным необогреваемым трубам вода поступает в нижний коллектор, откуда распределяется в обогреваемые трубы, в которых закипает. Необогреваемые трубы заполнены водой, имеющей плотность ρ´, а обогреваемые трубы заполнены пароводяной смесью, имеющей плотность ρсм, средняя плотность которой меньше ρ´. Нижняя точка контура — коллектор — с одной стороны подвергается давлению столба воды, заполняющей необогреваемые трубы, равному Hρ´g, а с другой — давлению смg столба пароводяной смеси. Возникающая разность давлений H(ρ´ — ρсм)g вызывает движение в контуре и называется движущим напором естественной циркуляцииSдв (Па):

Sдв = H(ρ´ — ρсм)g,

где H — высота контура; g - ускорение свободного падения.

В отличие от однократного движения воды в экономайзере и пара в пароперегревателе движение рабочего тела в циркуляционном контуре является многократным, так как при проходе через парообразующие трубы вода испаряется не полностью и паросодержание смеси на выходе из них составляет 3-20%.

Отношение массового расхода циркулирующей в контуре воды к количеству образовавшегося пара в единицу времени называется кратностью циркуляции

R = mв/mп.

В котлах с естественной циркуляцией  R = 5-33, а в котлах с принудительной циркуляцией — R= 3-10.

В барабане образовавшийся пар отделяется от капель воды и поступает в пароперегреватель и далее в турбину.

В котлах с многократной принудительной циркуляцией (рис. 3,в) для улучшения циркуляции устанавливается дополнительно циркуляционный насос. Это позволяет лучше компоновать поверхности нагрева котла, допуская движение пароводяной смеси не только по вертикальным парогенерирующим трубам, но также по наклонным и горизонтальным.

Поскольку наличие в парообразующих поверхностях двух фаз — воды и пара — возможно лишь при докритическом давлении, барабанные котлы работают при давлениях меньше критических.

Температура в топке в зоне горения факела достигает 1400-1600°С. Поэтому стены топочной камеры выкладывают из огнеупорного материала, а их наружная поверхность покрывается тепловой изоляцией. Частично охладившиеся в топке продукты сгорания с температурой 900-1200°С поступают в горизонтальный газоход котла, где омывают пароперегреватель, а затем направляются в конвективную шахту, в которой размещаются промежуточный пароперегреватель, водяной экономайзер и последняя по ходу газов поверхность нагрева — воздухоподогреватель, в котором воздух подогревается перед его подачей в топку котла. Продукты сгорания за этой поверхностью называются уходящими газами: они имеют температуру 110-160°С. Поскольку дальнейшая утилизация тепла при такой низкой температуре нерентабельна, уходящие газы с помощью дымососа удаляются в дымовую трубу.

Большинство топок котлов работает под небольшим разрежением 20-30 Па (2 — 3 мм вод.cт.) в верхней части топочной камеры. По ходу продуктов сгорания разрежение в газовом тракте увеличивается и составляет перед дымососами 2000-3000 Па, что вызывает поступление атмосферного воздуха через неплотности в стенах котла. Они разбавляют и охлаждают продукты сгорания, понижают эффективность использования тепла; кроме того, при этом увеличивается нагрузка дымососов и растет расход электроэнергии на их привод.

В последнее время создаются котлы, работающие под наддувом, когда топочная камера и газоходы работают под избыточным давлением, создаваемым вентиляторами, а дымососы не устанавливаются. Для работы котла под наддувом он должен выполнятьсягазоплотным.

Поверхности нагрева котлов выполняются из сталей различных марок в зависимости от параметров (давления, температуры и др.) и характера движущейся в них среды, а также от уровня температур и агрессивности продуктов сгорания, с которыми они и находятся в контакте.

Важное значение для надежной работы котла имеет качество питательной воды. В котел непрерывно поступает с ней некоторое количество взвешенных твёрдых частиц и растворенных солей, а также окислов железа и меди, образующихся в результате коррозии оборудования электростанций. Очень небольшая часть солей уносится вырабатываемым паром. В котлах с многократной циркуляцией основное количество солей и почти все твердые частицы задерживаются, из-за чего их содержание в котловой воде постепенно увеличивается. При кипении воды в котле соли выпадают из раствора и на внутренней поверхности обогреваемых труб появляется накипь, которая плохо проводит тепло. В результате покрытые изнутри слоем накипи трубы недостаточно охлаждаются движущейся в них средой, нагреваются из-за этого продуктами сгорания до высокой температуры, теряют свою прочность и могут разрушиться под действием внутреннего давления. Поэтому часть  воды с повышенной концентрацией солей необходимо удалять из котла. На восполнение удаленного количества воды подается питательная вода с меньшей концентрацией примесей. Такой процесс  замены воды в замкнутом контуре называется непрерывной продувкой. Чаще всего непрерывная продувка производится из барабана котла.

В прямоточных котлах из-за отсутствия барабана нет непрерывной продувки. Поэтому к качеству питательной воды этих котлов предъявляются особенно высокие требования. Они обеспечиваются путем очистки турбинного конденсата после конденсатора в специальных конденсатоочистительных установках и соответствующей обработкой добавочной воды на водоподготовительных установках.

Вырабатываемый современным котлом пар является, вероятно, одним из наиболее чистых продуктов, производимых промышленностью в больших количествах.

Так, например, для прямоточного котла, работающего на сверхкритическом давлении, содержание загрязнений не должно превышат 30-40 мкг/кг пара.

Современные электростанции работают с достаточно высоким КПД. Теплота, затраченная на подогрев питательной воды, ее испарение и получение перегретого пара, — это полезно использованная теплота Q1.

Основная потеря тепла в котле происходит с уходящими газами Q2. Кроме того, могут быть потери Q3 от химической неполноты сгорания, обусловленные наличием в уходящих газах CO, H2, CH4 ; потери с механическим недожогом  твердого топлива Q4, связанные с наличием в золе частичек несгоревшего углерода;  потери в окружающую среду через ограждающие котел и газоходы конструкции Q5;  и, наконец, потери с физической теплотой шлака Q6.

Обозначая q1 = Q1 / Q , q2 = Q2 / Q  и т.д., получаем КПД котла:

 ηk = Q1/ Q=q1=1-( q2+ q3+ q4+ q5+ q6),

где Q - количество тепла, выделяющегося при полном сгорании топлива.

Потеря тепла с уходящими газами составляет 5-8% и уменьшается с уменьшением избытка воздуха. Меньшие потери соответствуют практически горению без избытка воздуха, когда воздуха в топку подается лишь на 2-3% больше, чем теоретически необходимо для горения.

Отношение действительного объёма воздуха VД, подаваемого в топку,  к теоретически необходимомуVТ для сгорания топлива называется коэффициентом избытка воздуха:

α = VД/VТ ≥ 1.

Уменьшение α может привести к неполному сгоранию топлива, т.е. к возрастанию потерь с химическим и механическим недожогом. Поэтому принимая q5 и q6постоянными, устанавливают такой избыток воздуха a, при котором сумма потерь

q2+ q3+ q4 → min .

Оптимальные избытки воздуха поддерживаются с помощью электронных автоматических регуляторов процесса горения, изменяющих подачу топлива и воздуха при изменениях нагрузки котла, обеспечивая при этом наиболее экономичный режим его работы. КПД современных котлов составляет 90-94%.

Все элементы котла: поверхности нагрева, коллекторы, барабаны, трубопроводы, обмуровка, помосты и лестницы обслуживания — монтируются на каркасе, представляющем собой рамную конструкцию. Каркас опирается на фундамент или подвешивается к балкам, т.е. опирается на несущие конструкции здания. Масса котла вместе с каркасом довольно значительна. Так, например, суммарная нагрузка, передаваемая на фундаменты через колонны каркаса котла паропроизводительностьюD=950 т/ч, составляет 6000 т. Стены котла покрываются изнутри огнеупорными материалами, а снаружи — тепловой изоляцией.

Применение газоплотных экранов приводит к экономии металла на изготовление поверхностей нагрева; кроме того, в этом случае вместо огнеупорной кирпичной обмуровки стены покрываются лишь мягкой тепловой изоляцией, что позволяет на 30-50% уменьшить массу котла.

Энергетические стационарные котлы, выпускаемые промышленностью России, маркируются следующим образом: Е — паровой котел с естественной циркуляцией без промежуточного перегрева пара; Еп — паровой котел с естественной циркуляцией с промежуточным перегревом пара; Пп- прямоточный паровой котел с промежуточным перегревом пара. За буквенным обозначением следуют цифры: первая — паропроизводительность (т/ч), вторая — давление пара (кгс/см2). Например, ПК — 1600 — 255 означает : паровой котел с камерной топкой с сухим шлакоудалением, паропроизводительностью 1600 т/ч, давление пара 255 кгс/см2.

 

Паротурбинные установки тепловых электростанций (ТЭС)

Паровая турбина вместе с относящимися к ней регенеративными подогревателями, конденсатором, насосами, трубопроводами и арматурой образует паротурбинную установку.

Современная паровая турбина состоит из большого числа деталей, тщательно изготовленных и собранных в единый агрегат. Мощности современных энергетических турбоагрегатов постоянно повышаются, и в настоящее время основной прирост мощностей в энергосистемах происходит за счет ввода агрегатов 300, 500, 800 МВт. На Костромской ГРЭС сооружен головной агрегат мощностью 1200 МВт.

Увеличение мощности турбоагрегатов позволяет сооружать ТЭС большой мощности при одновременном удешевлении их строительства и эксплуатации и снижении расходов топлива на выработанный киловатт-час. Наряду с экономичностью современная турбина должна отвечать высоким требованиям безопасности, надежности и маневренности. Требование высокой маневренности предъявляется ко всему энергетическому оборудованию. Турбина должна допускать быстрый пуск, набор и изменение нагрузки и остановку. Эта задача весьма сложна для агрегатов, работающих при высоких начальных параметрах пара (26 МПа, 540-570 °С) и имеющих стенки корпусов и фланцы большой толщины.

При разработке и эксплуатации турбин приходится сталкиваться с весьма сложными проблемами аэродинамики, теории колебаний, теплопередачи, изменения свойств материалов при высоких температурах и вибрации, автоматического регулирования и контроля турбоустановки.

 

Рис. 1. Схема простейшей турбины

На рис. 1 показана схема простейшей турбины, а на рис. 2 — схема устройства многоступенчатой паровой турбины. Простейшая турбина состоит из соплового аппарата 1, рабочей лопатки 2, вала 3 и диска 4.

Рис. 2. Схема устройства многоступенчатой паровой турбины

1 — вал турбины; 2 — диски; 3 — рабочие решетки; 4 — нижняя половина корпуса; 5 — верхняя половина (крышка) корпуса; 6 — диафрагмы (нижние половины); 7, 8 – сопловые решетки; 9 – уплотнения диафрагмы; 10 – сопловая решетка первой ступени давления; 11 – переднее уплотнение; 12 – заднее уплотнение; 13 – опорные подшипники; 14 – упорный подшипник; 15 — соединительная муфта; 16 — червячная передача; 17 — масляный насос; 18 — фундаментные плиты; 19 — регулятор скорости; 20 — масляный бак; 21 — регулятор безопасности; 22 — камера отбора; 23 — окна для отбора пара; 24, 27 — опорные фланцы корпуса; 25, 26 — фланцы опорных блоков

Турбина состоит из вращающейся части — ротора и неподвижной части — статора. К ротору относятся вал и закрепленные на нем диски с рабочими лопатками. Статор включает в себя паровпускные органы, сопловые решетки, подшипники и др. Корпус турбины делается разъемным в горизонтальной плоскости по центровой линии вала. Нижняя его часть опирается на фундамент, а верхняя часть устанавливается на нижнюю и крепится по фланцам с помощью шпилек и гаек. Через паровпускные органы в сопловую коробку вводится свежий пар. Корпус заканчивается выхлопным патрубком, через который отработавший пар отводится из турбины.

В неподвижных каналах-соплах пар расширяется; при этом его давление и температура снижаются, скорость парового потока возрастает до нескольких сот метров в секунду и соответственно увеличивается его кинетическая энергия.

Она используется в подвижных рабочих лопатках, закрепленных на дисках, насаженных на вал турбины (рис. 2). Между дисками располагаются неподвижные перегородки — диафрагмы с закрепленными в них соплами. Диафрагма и диск с рабочими лопатками образуют ступень турбины.

При большом числе ступеней (20 — 30) турбина состоит из нескольких цилиндров. Частота вращения ротора паровых энергетических турбин обычно составляет 3000 об/мин или 50 с-1, что соответствует принятой в СНГ частоте переменного тока 50 Гц.

На каждой ступени турбины лишь часть внутренней энергии пара преобразуется в механическую энергию, передаваемую с вала турбины на вал генератора электрического тока. Увеличение числа ступеней приводит к повышению КПД турбинной установки, так как в этом случае каждая ступень «работает» в более оптимальном режиме. Однако увеличение числа ступеней оправдывает себя лишь до определенного предела, так как с ростом числа ступеней турбина усложняется и становится дороже.

Крупные энергоблоки, работающие при высоком и закритическом давлении пара, выполняются с промежуточным перегревом. Пар высоких параметров, совершая работу в турбине, на последних ее ступенях увлажняется, а это приводит к снижению КПД и эрозионному воздействию капелек влаги на лопатки турбины. При использовании же промежуточного перегрева пара не только понижается его конечная влажность, но и повышаются показатели тепловой экономичности цикла. На рис. 3 дана схема одной из наиболее распространенных в нашей энергетике конденсационных турбин К- 300 — 240 мощностью 300 МВт, работающей при начальном давлении пара 240 атм (23,5 МПа). Температура свежего пара принята 540 — 560 °С, частота вращения 3000 об/мин.

Турбина состоит из трех цилиндров: цилиндра высокого давления (ЦВД), цилиндра среднего давления (ЦСД) и цилиндра низкого давления (ЦНД). В двенадцати ступенях ЦВД пар расширяется от указанных выше начальных параметров до давления 4 МПа, после чего направляется в промежуточный пароперегреватель (ПП), установленный в котле, и далее с давлением 3,5 МПа и температурой 540 — 560 °С поступает в ЦСД. В двенадцати головных ступенях ЦСД пар расширяется до давления 0,2 МПа, затем разделяется на два потока: одна треть проходит пять ступеней низкого давления, расположенных в ЦСД, и поступает в конденсатор, а две трети пара по перепускным трубам подаются в ЦНД, где, разделяясь на два потока, проходят по пяти ступеням низкого давления и направляются также в конденсатор. Давление пара за последними ступенями перед входом в конденсатор равно 0,0035 МПа. Разделение пара в части низкого давления на три потока связано с большими объемами пара в последних ступенях. Выпуск всего объема пара через одну решетку приводил бы к недопустимым по соображениям прочности высотам рабочих лопаток. Даже при разделении пара в последних ступенях на три потока высота лопаток составляет 960 мм, а окружная скорость на их вершинах — 540 м/с. При массе последней лопатки 9,8 кг центробежная сила, действующая на нее, равна ~950 кН.

Еще более сложны турбины большей мощности. Так, у турбин мощностью 500 МВт делается 4 выхлопа в конденсатор, а у турбины К-800-240 мощностью 800 МВт — шесть выхлопов в конденсатор. В турбине К-1200-240 мощностью 1200 МВт, установленной на Костромской ГРЭС, лопатки последних ступеней имеют длину 1200 мм, но для уменьшения центробежных сил они выполнены из более легкого титанового сплава.

 

Рис. 3. Изменение параметров рабочего тела в активной турбине:

1, 9 — камеры свежего и отработанного пара; 2,4,6 — сопла; 3,5,8 — рабочие лопатки; 7 — диафрагма.

 

Рис. 4. Схема турбины К-300-240 (z — число ступеней)

Теплофикационные турбины, устанавливаемые на ТЭЦ, могут иметь 1 или 2 регулируемых отбора (например, промышленный и теплофикационный). В теплофикационной турбине Т — 250 — 240 имеются 2 отбора пара для подогрева воды в системе теплоснабжения (из них один регулируемый) и, кроме того, может быть осуществлен предварительный нагрев сетевой воды в специальном подогревателе, встроенном в конденсатор.

Отработавший пар конденсационных турбин и турбин с промышленными и теплофикационными отборами поступает в конденсатор, где поддерживается давление значительно ниже атмосферного. В конденсаторе осуществляется отвод тепла от рабочего тела — пара — при возможно более низкой температуре и давлении с превращением пара в конденсат, идущий вновь на питание котлов. Здесь тепло отдается охлаждающей (циркуляционной) воде. Конденсат не должен смешиваться с охлаждающей водой, имеющей большое количество примесей. Поэтому конденсатор представляет собой теплообменник поверхностного типа.

На рисунке 5 приведена схема конденсатора паровой турбины.

Теплообмен от пара к охлаждающей воде происходит через стенки трубок небольшого диаметра, чаще всего латунных, внутри которых движется охлаждающая вода. В конденсатор поступает влажный пар; температура насыщения конденсирующегося пара tк тем ниже, чем ниже температура циркуляционной воды. При прямоточном водоснабжении, когда вода в конденсатор забирается из реки или пруда, ее температура колеблется от 2 до 20 °С (среднегодовая расчетная температура 10 — 12 °С). Если же водоснабжение является оборотным с охлаждением воды в градирнях, то температура воды меняется в зависимости от времени года от 10 — 12 °С до 35 -40 °С.

 

Рис.5. Схема конденсатора паровой турбины:

1 – патрубок для выхода воды, 2 – крышка водяных камер, 3 — водяные камеры, 4 – трубные решетки, 5 – корпус конденсатора, 6 – пароприемная горловина, 7 — трубки, 8 — сборник конденсата, 9 — патрубок для подвода воды, 10 — патрубок для удаления воздуха.

Обычно циркуляционная вода в конденсаторе нагревается на 8 -10 °С. При поддержании давления в конденсаторе pк = 0,0035 МПа температура конденсации составляет tk = 26,4 °С. В летнее время, когда температура охлаждающей воды выше среднегодовой расчетной, давление в конденсаторе может повышаться до 0,01 МПа, что соответственно снижает экономичность работы турбоустановки. На одну тонну конденсируемого пара расходуется 50 — 60 т охлаждающей воды.

Для поддержания хороших условий теплообмена и постоянного парциального давления воздуха, а вместе с ним и общего давления в конденсаторе просачивающийся в конденсатор воздух необходимо непрерывно удалять. Для этого устанавливаются воздухоотсасывающие устройства — пароструйные или водоструйные эжекторы.

Конденсат из нижней части конденсатора откачивается конденсатными насосами и подается через подогреватели в котел. Конденсатор устанавливается под турбиной и представляет собой горизонтально расположенный сосуд, сваренный из листовой стали. Внутри корпуса конденсатора на некотором расстоянии от его торцов ввариваются специальные пластины с отверстиями, называемые трубными досками, в которые завальцовываются трубки, образующие поверхности теплообмена. Корпус с торцов закрывается крышками так, что между крышками и трубными досками образуются водяные камеры.

Если в одной из камер установить горизонтальную перегородку, то по-лучим двухходовой конденсатор: охлаждающая вода поступает в нижний (подводящий) патрубок передней камеры, проходит по нижним рядам труб и через заднюю камеру поступает в верхние ряды труб, после чего удаляется из конденсатора.

Для рассмотренной выше турбины К-300-240 Ленинградского металлического завода конденсатор имеет следующие характеристики:

Количество трубок, шт.

19600

Длина трубок, м

8,9

Диаметр dн, мм

28

Диаметр dвн, мм

26

Расход пара при номинальной нагрузке турбины, т/ч

570

Номинальный расход охлаждающей жидкости, т/ч

36000

 

 

1. СИНХРОННЫЕ ГЕНЕРАТОРЫ

1.1.  Технические характеристики и конструкции современных генераторов

 

Для выработки электроэнергии на электростанциях применяют синхронные генераторы трехфазного переменного тока. Различают турбогенераторы (первичный двигатель — паровая или газовая турбина) и гидрогенераторы (первичный двигатель - гидротурбина).

Для синхронных электрических машин в установившемся режиме работы имеется строгое соответствие между частотой вращения агрегата n, мин-1, и частотой сети f1, Гц:

n = 60*f1 / p, мин-1

где р — число пар полюсов обмотки статора генератора.

Паровые и газовые турбины выпускают на большие частоты вращения (3000 и 1500 мин-1), т. к. при этом турбоагрегаты имеют наилучшие технико-экономические показатели. На тепловых электростанциях (ТЭС), сжигающих обычное топливо, частота вращения агрегатов, как правило, составляет 3000 мин-1, а синхронные турбогенераторы имеют два полюса. На АЭС применяют агрегаты с частотой вращения 1500 и 3000 мин-1.

Быстроходность турбогенератора определяет особенности его конструкции. Эти генераторы выполняются с горизонтальным валом. Ротор турбогенератора, работающий при больших механических и тепловых нагрузках, изготовляется из цельной поковки специальной стали (хромоникелевой или хромоникельмолибденовой), обладающей высокими магнитными и механическими свойствами.

Ротор выполняется неявнополюсным. Вследствие значительной частоты вращения диаметр ротора ограничивается по соображениям механической прочности с учетом частоты вращения. Длина бочки ротора также имеет предельное значение, равное 6—6,5 м. Определяется оно из условий допустимого статического прогиба вала и получения приемлемых вибрационных характеристик. В активной части ротора, по которой проходит основной магнитный поток, фрезеруются пазы, заполняемые катушками обмотки возбуждения (рис. 1), В пазовой части обмотки закрепляются немагнитными, легкими, но прочными клиньями из дюралюминия. Лобовая часть обмотки, не лежащая в пазах, предохраняется от смещения под действием центробежных сил с помощью бандажа. Бандажи являются наиболее напряженными в механическом отношении частями ротора и обычно выполняются из немагнитной высокопрочной стали. По обеим сторонам ротора на его валу устанавливаются вентиляторы (чаще всего пропеллерного типа), обеспечивающие циркуляцию охлаждающего газа в машине.

Статор турбогенератора состоит из корпуса и сердечника. Корпус изготовляется сварным, с торцов он закрывается щитами с уплотнениями в местах стыка с другими частями (рис. 1). Сердечник статора набирается из изолированных листов электротехнической стали толщиной 0,5 мм. Листы набирают пакетами, между которыми оставляют вентиляционные каналы. В пазы, имеющиеся во внутренней расточке сердечника, укладывается трехфазная обмотка, обычно двухслойная.

Гидротурбины имеют обычно относительно малую частоту вращения (60—600 мин-1). Частота вращения тем меньше, чем меньше напор воды и чем больше мощность турбины. Гидрогенераторы поэтому являются тихоходными машинами и имеют большие размеры и массы, а также большое число полюсов. Гидрогенераторы выполняют с явнополюсными роторами и преимущественно с вертикальным расположением вала. Диаметры роторов мощных гидрогенераторов достигают 14 - 16 м, а диаметры статоров —(20 – 22) м.

В машинах с большим диаметром ротора сердечником служит обод, собираемый на спицах, которые крепятся на втулке ротора. Полюсы, как и обод, делают наборными из стальных листов и монтируют на ободе ротора с помощью Т-образных выступов (рис. 2). На полюсах, помимо обмотки возбуждения, размещается еще так называемая демпферная обмотка, которая образуется из медных стержней, закладываемых в пазы на полюсных наконечниках и замыкаемых с торцов ротора кольцами. Эта обмотка предназначена для успокоения колебаний ротора агрегата, которые возникают при всяком возмущении, связанном с резким изменением нагрузки генератора.

 

Рис. 1. Общий вид современного турбогенератора:

1 — обмотка статора; 2 — ротор; 3,4— соединительные муфты; 5 — корпус статора;

6 — сердечник статора; 7 — возбудитель; 8 — контактные кольца ротора и щетки;

9 — подшипники генератора; 10 — подшипники возбудителя.

 

В турбогенераторах роль успокоительной обмотки выполняют массивная бочка ротора и металлические клинья, закрывающие обмотку возбуждения в пазах. Статор гидрогенератора имеет принципиально такую же конструкцию, как и статор турбогенератора, но в отличие от последнего выполняется разъемным. Он делится по окружности на две - шесть равных частей, что значительно облегчает его транспортировку и монтаж.

В последние годы начинают находить применение так называемые капсульные гидрогенераторы, имеющие горизонтальный вал. Такие генераторы заключаются в водонепроницаемую оболочку (капсулу), которая с внешней стороны обтекается потоком воды, проходящим через турбину. Капсульные генераторы изготовляют на мощность несколько десятков мегавольт-ампер. Это сравнительно тихоходные генераторы (n = 60 ÷ 150 мин-1) с явнополюсным ротором.

Среди других типов синхронных генераторов, применяемых на электростанциях, надо отметить так называемые дизель-генераторы, соединяемые с дизельным двигателем внутреннего сгорания. Это явнополюсные машины с горизонтальным валом. Дизель как поршневая машина имеет неравномерный крутящий момент, поэтому дизель-генератор снабжается маховиком или его ротор выполняется с повышенным маховым моментом.

1.2. Номинальные параметры генераторов.

 

Завод-изготовитель предназначает генератор для определенного длительно допустимого режима работы, который называют номинальным. Этот режим работы характеризуется параметрами, которые носят название номинальных данных генератора и указываются на его табличке, а также в паспорте машины.

Номинальное напряжение генератора - это линейное (междуфазное) напряжение обмотки статора в номинальном режиме.

Номинальным током статора генератора называется то значение тока, при котором допускается длительная нормальная работа генератора при нормальных параметрах охлаждения (температура, давление и расход охлаждающего газа и жидкости) и номинальных значениях мощности и напряжения, указанных в паспорте генератора.

Номинальная полная мощность генератора определяется по следующей формуле:

S = m * UНОМ * IНОМ ,  ВА

 

Номинальная активная мощность генератора - это наибольшая активная мощность, для длительной работы с которой он предназначен в комплекте с турбиной:

Рном = S ном * соsφном,  Вт

Номинальные мощности турбогенераторов должны соответствовать ряду мощностей согласно ГОСТ 533—85. Шкала номинальных мощностей крупных гидрогенераторов не стандартизирована.

Номинальный ток ротора - это наибольший ток возбуждения генератора, при котором обеспечивается отдача генератором его номинальной мощности при отклонении напряжения статора в пределах ± 5 % номинального значения и при номинальном коэффициенте мощности.

Номинальный коэффициент мощности согласно ГОСТ принимается равным: соsφном = 0,8  - для генераторов мощностью до 125 MBA; соsφном = 0,85 для турбогенераторов мощностью до 588 MBА и гидрогенераторов до 360 MBA;  соsφном = 0,9 для более мощных машин.

Для капсульных гидрогенераторов обычно соsφном = 1. Каждый генератор характеризуется также КПД при номинальной нагрузке и номинальном коэффициенте мощности. Для современных генераторов номинальный коэффициент полезного действия колеблется в пределах 96,3 - 98,8%.

1.3. Системы охлаждения генераторов

 

Во время работы синхронного генератора его обмотки и активная сталь нагреваются. Допустимые температуры нагрева обмоток статора и ротора зависят в первую очередь от применяемых изоляционных материалов и температуры охлаждающей среды. По ГОСТ 533—76 для изоляции класса В (на асфальтобитумных лаках) допустимая температура нагрева обмотки статора должна находиться в пределах 105°С, а ротора 130°С. При более теплостойкой изоляции обмоток статора и ротора, например, классов F и Н, пределы допустимой температуры нагрева увеличиваются до 1350С и 1550С соответственно.

В процессе эксплуатации генераторов изоляция обмоток постепенно стареет. Причиной этого являются загрязнение, увлажнение, окисление кислородом воздуха, воздействие электрического поля и электрических нагрузок и т. д. Однако главной причиной старения изоляции является ее нагрев. Чем выше температура нагрева изоляции, тем быстрее она изнашивается, тем меньше срок ее службы. Срок службы изоляции класса В при температуре нагрева ее до 120°С составляет около 15 лет, а при нагреве до 140 °С — сокращается почти до 2 лет. Та же изоляция при температуре нагрева 105°С (т. е. в пределах ГОСТ) стареет значительно медленнее и срок службы ее увеличивается до 30 лет. Поэтому во время эксплуатации при любых режимах работы генератора нельзя допускать нагрева его обмоток свыше допустимых температур.

Для того чтобы температура нагрева не превышала допустимых значений, все генераторы выполняют с искусственным охлаждением. По способу отвода тепла от нагретых обмоток статора и ротора различают косвенное и непосредственное охлаждение.

При косвенном охлаждении охлаждающий газ (воздух или водород) с помощью вентиляторов, встроенных в торцы ротора, подается внутрь генератора и прогоняется через немагнитный зазор и вентиляционные каналы. При этом охлаждающий газ не соприкасается с проводниками обмоток статора и ротора и тепло, выделяемое ими, передается газу через значительный тепловой барьер — изоляцию обмоток.

При непосредственном охлаждении охлаждающее вещество (газ или жидкость) соприкасается с проводниками обмоток генератора, минуя изоляцию и сталь зубцов, т. е. непосредственно.

Отечественные заводы изготовляют турбогенераторы с воздушным, водородным и жидкостным охлаждением, а также гидрогенераторы с воздушным и жидкостным охлаждением.

Существуют две системы воздушного охлаждения - проточная и замкнутая. Проточную систему охлаждения применяют редко и лишь в турбогенераторах мощностью до 2 MBА, а также в гидрогенераторах до 4 MBА. При этом через генератор прогоняется воздух из машинного зала, который быстро загрязняет изоляцию обмоток статора и ротора, что в конечном счете сокращает срок службы генератора.

При замкнутой системе охлаждения один и тот же объем воздуха циркулирует по замкнутому контуру. Схематично циркуляция воздуха при таком охлаждении для турбогенератора представлена на рис. 2. Для охлаждения воздуха служит воздухоохладитель 2, по трубкам которого непрерывно циркулирует вода. Нагретый в машине воздух выходит через патрубок 2 в камеру горячего воздуха 3, проходит через воздухоохладитель и через камеру холодного воздуха 4 снова возвращается в машину. Холодный воздух нагнетается в машину встроенными вентиляторами 5. В генераторах с большой длиной активной части холодный воздух подается с обоих торцов машины, как это показано на рис. 2.

Рис. 2. Замкнутая система воздушного охлаждения турбогенератора

 

В целях повышения эффективности охлаждения турбогенераторов, длина активной части которых особенно велика, а воздушный зазор мал, используют многоструйную радиальную систему вентиляции. Для этого вертикальными плоскостями 6 делят систему охлаждения турбогенераторов на ряд секций. В каждую секцию воздух поступает из воздушного зазора (I и III секции) или из специального осевого канала 7 (II секция). Для увеличения поверхности соприкосновения нагретых частей с охлаждающим воздухом в активной стали машины выполняют систему вентиляционных каналов. Пройдя через радиальные вентиляционные каналы в стали, нагретый воздух уходит в отводящие камеры 8. Многоструйная вентиляция обеспечивает равномерное охлаждение турбогенератора по всей длине. Для восполнения потерь в результате утечек предусмотрен дополнительный забор воздуха через двойные масляные фильтры 9, установленные в камере холодного воздуха.

Отечественные заводы изготовляют турбогенераторы с замкнутой системой воздушного охлаждения мощностью до 12 МВт включительно. Замкнутая система косвенного охлаждения воздухом у гидрогенераторов применяется значительно шире. Наиболее крупный генератор с косвенным воздушным охлаждением серии СВ мощностью 264,7 MBА выпущен ПО «Электросила» для Братской ГЭС. Схема вентиляции гидрогенератора показана на рис. 3.

 

Рис. 3. Замкнутая система вентиляции гидрогенератора:

1 - ротор, 2 - статор, 3- воздухоохладитель, 4 — лопатки вентилятора.

 

В гидрогенераторах охлаждение явнополюсных роторов облегчается благодаря наличию межполюсных промежутков и большей поверхности охлаждения ротора.

 

Рис. 4. Схема многоструйной радиальной вентиляции в турбогенераторах:

1 - камеры холодного газа, 2 - камеры горячего газа, 3 – газоохладители.

 

Охлаждение гладкого ротора турбогенератора менее эффективно, так как в рассматриваемом случае он охлаждается только со стороны воздушного зазора. Последнее обстоятельство в значительной мере определяет ограниченные возможности воздушного охлаждения для турбогенераторов. У генераторов с воздушным охлаждением предусматривается устройство для тушения пожаров водой.

Турбогенераторы с косвенным водородным охлаждением имеют в принципе такую же схему вентиляции, как и при воздушном охлаждении. Отличие состоит в том, что объем охлаждающего водорода ограничивается корпусом генератора, в связи с чем охладители встраиваются непосредственно в корпус. Размещение газоохладителей и газосхема циркуляции водорода внутри генератора представлены на рис. 4.

Водородное охлаждение эффективнее воздушного, так как водород как охлаждающий газ по сравнению с воздухом имеет ряд существенных преимуществ. Он имеет в 1,51 раза больший коэффициент теплопередачи, в 7 раз более высокую теплопроводность. Последнее обстоятельство предопределяет малое тепловое сопротивление прослоек водорода в изоляции и зазорах пазов. Значительно меньшая плотность водорода по сравнению с воздухом позволяет уменьшить вентиляционные потери в 8 - 10 раз, в результате чего КПД генератора увеличивается на 0,8 - 1 %.

Отсутствие окисления изоляции в среде водорода по сравнению с воздушной средой повышает надежность работы генератора и увеличивает срок службы изоляции обмоток. К достоинствам водорода относится и то, что он не поддерживает горения, поэтому в генераторах с водородным охлаждением можно отказаться от устройства пожаротушения.

Внимание! Водород, заполняющий генератор в смеси с воздухом (от 4,1 до 74%, а в присутствии паров масла — от 3,3 до 81,5%), образует взрывоопасную смесь, поэтому у машин с водородным охлаждением должна быть обеспечена высокая газоплотность корпуса статора масляными уплотнениями вала, уплотнением токопроводов к обмоткам статора и ротора, уплотнением крышек газоохладителей, лючков и съемных торцевых щитов. Наиболее сложно выполнить надежные масляные уплотнения вала генератора, препятствующие утечке газа.

Чем выше избыточное давление водорода, тем эффективнее охлаждение генератора, следовательно, при одних и тех же размерах генератора можно увеличить его номинальную мощность. Однако при избыточном давлении более 0,4 - 0,6 МПа прирост мощности генератора не оправдывает затрат на преодоление возникающих при этом технических трудностей (усложнение работы уплотнений и изоляции обмоток). Поэтому давление водорода в современных генераторах более 0,6 МПа не применяется.

Генераторы с косвенным водородным охлаждением могут при необходимости работать и с воздушным охлаждением, но при этом их мощность соответственно уменьшается.

Информация о работе Схема тепловой электрической станции (ТЭС/ТЭЦ)