Биохимия

Автор работы: Пользователь скрыл имя, 19 Января 2012 в 00:52, контрольная работа

Краткое описание

Коллоидные системы. Схема строения мицеллы.
Коллоидные системы относятся к дисперсным системам – системам, где одно вещество в виде частиц различной величины распределено в другом. Дисперсные системы чрезвычайно многообразны; практически всякая реальная система является дисперсной. Дисперсные системы классифицируют прежде всего по размеру частиц дисперсной фазы (или степени дисперсности); кроме того, их разделяют на группы, различающиеся по природе и агрегатному состоянию дисперсной фазы и дисперсионной среды.

Содержимое работы - 1 файл

биохимия 7.docx

— 188.12 Кб (Скачать файл)

     1.Коллоидные  системы. Схема  строения мицеллы.

     Коллоидные  системы относятся к дисперсным системам – системам, где одно вещество в виде частиц различной величины распределено в другом. Дисперсные системы чрезвычайно многообразны; практически всякая реальная система является дисперсной. Дисперсные системы классифицируют прежде всего по размеру частиц дисперсной фазы (или степени дисперсности); кроме того, их разделяют на группы, различающиеся по природе и агрегатному состоянию дисперсной фазы и дисперсионной среды.

       Коллоидные системы – системы, размер частиц дисперсной фазы в которых составляет 10-7 – 10-9 м. Коллоидные системы характеризуются гетерогенностью, т.е. наличием поверхностей раздела фаз и очень большим значением удельной поверхности дисперсной фазы. Это обусловливает значительный вклад поверхностной фазы в состояние системы и приводит к появлению у коллоидных систем особых, присущих только им, свойств. 

     Коллоидные  системы подразделяются на две группы, резко отличные по характеру взаимодействий между частицами дисперсной фазы и дисперсионной среды – лиофобные коллоидные растворы (золи) и растворы высокомолекулярных соединений (ВМС), которые ранее называли лиофильными коллоидами. К лиофобным коллоидам относятся системы, в которых частицы дисперсной фазы слабо взаимодействуют с дисперсионной средой; эти системы могут быть получены только с затратой энергии и устойчивы лишь в присутствии стабилизаторов.

     Строение  структурной единицы лиофобных коллоидов – мицеллы – может быть показано лишь схематически, поскольку мицелла не имеет определенного состава. Рассмотрим строение коллоидной мицеллы на примере гидрозоля иодида серебра, получаемого взаимодействием разбавленных растворов нитрата серебра и иодида калия:

     AgNO3 + KI  ––>   AgI + KNO3

     Коллоидная  мицелла золя иодида серебра образована микрокристаллом иодида серебра, который  способен к избирательной адсорбции  из окружающей среды катионов Ag+ или иодид-ионов. Если реакция проводится в избытке иодида калия, то кристалл будет адсорбировать иодид-ионы; при избытке нитрата серебра микрокристалл адсорбирует ионы Ag+. В результате этого микрокристалл приобретает отрицательный либо положительный заряд; ионы, сообщающие ему этот заряд, называются потенциалопределяющими, а сам заряженный кристалл – ядром мицеллы. Заряженное ядро притягивает из раствора ионы с противоположным зарядом – противоионы; на поверхности раздела фаз образуется двойной электрический слой. Некоторая часть противоионов адсорбируется на поверхности ядра, образуя т.н. адсорбционный слой противоионов; ядро вместе с адсорбированными на нем противоионами называют коллоидной частицей или гранулой. Остальные противоионы, число которых определяется, исходя из правила электронейтральности мицеллы, составляют диффузный слой противоионов; противоионы адсорбционного и диффузного слоев находятся в состоянии динамического равновесия адсорбции – десорбции.

     Схематически  мицелла золя иодида серебра, полученного  в избытке иодида калия (потенциалопределяющие  ионы – анионы I, противоионы – ионы К+) может быть изображена следующим образом:

     {[AgI]m · nI · (n-x)K+}x– · x K+

     При получении золя иодида серебра в  избытке нитрата серебра коллоидные частицы будут иметь положительный  заряд:

     {[AgI]m · nAg+ · (n-x)NO3}x+ · x NO3 
 

 

     2. Химические свойства  глюкозы.

Свойства, обусловленные наличием в молекуле Специфические свойства
гидроксильных групп альдегидной группы  
1. Реагирует  с карбоновыми кислотами с  образованием сложных эфиров (пять  гидроксильных групп глюкозы  вступают в реакцию с кислотами) 1. Реагирует  с оксидом серебра (I) в аммиачном  растворе (реакция “серебряного  зеркала”):

CH2OH(CHOH)4-COH + Ag2O® CH2OH(CHOH)4-CO2H + 2Ag¯

Глюкоза способна подвергаться брожению: а) спиртовое  брожение

C6H12O6®2CH3-CH2OH+ CO2­ 

б) молочнокислое  брожение

C6H12O6®2CH3-CHOH-COOH

молочная  кислота

2. Как  многоатомный спирт реагирует  с гидроксидом меди (II) c образованием алкоголята меди (II) 2.Окисляется  гидроксидом меди (II) (с выпадением красного осадка)

3. Под  действием восстановителей превращается  в шестиатомный спирт

в) маслянокислое брожение

C6H12O6®C3H7COOH + 2H2­ + 2CO2­

масляная  кислота

     Так как глюкоза является альдегидоспиртом, то для нее характерны свойства альдегидов и свойства многоатомных спиртов.

     Реакция с аммиачным раствором серебра (образование «серебряного зеркала») Эта реакция рекомендуется для  подтверждения подлинности препаратов с альдегидной группой в молекуле:

     

     

     Гидрирование  глюкозы, в результате которого образуется шестиатомный спирт - сорбит:

     

     Качественная  реакция, доказывающая, что глюкоза  является многоатомным спиртом - происходит растворение свежеосажденного Сu(ОН)2 и образование ярко-синего раствора:

 

     

     3. Классификация и значение ферментов.

     Ферменты  – белки, которые обладают каталитической активностью и характеризуются  очень высокой специфичностью и  эффективностью действия.

     В зависимости от типа катализируемой реакции все ферменты подразделяются на 6 классов:

     · Ферменты, катализирующие окислительно-восстановительные  реакции - оксидоредуктазы;

     · Ферменты переноса различных группировок ( метильных, амино- и фосфогрупп и другие) -трансферазы.

     · Ферменты, осуществляющие гидролиз химических связей - гидролазы

     · Ферменты не гидролитического отщепления от субстрата различных группировок (NH3, CO2,H2O и другие) - лиазы.

     · Ферменты, ускоряющие синтез связей в  биологических молекулах при  участии доноров энергии, например АТФ,- лигазы.

     · Ферменты, катализирующие превращение  изомеров друг в друга,- изомеразы.

     Оксидоредуктазы – ферменты, катализирующие окислительно-восстановительные процессы в организме. Они осуществляют перенос водорода и электронов и по своим тривиальным названиям известны как дегидрогеназы, оксидазы и пероксидазы. Эти ферменты отличаются тем, что имеют специфические коферменты и простетические группы. Их подразделяют на функциональные группы доноров, от которых они принимают водород или электроны, и акцепторов, на которые они их передают (на СН-ОН группу, СН- NH группу, C-NH группу и другие).

     Трансферазы – ферменты, переносящие атомные группы (в зависимости от того, перенос какой группы они осуществляют, их соответственно и называют). Среди них известны ферменты осуществляющие транспорт больших остатков, например гликозилтрансферазы и другие. Трансферазы благодаря разнообразию переносимых ими остатков принимают участие в промежуточном обмене веществ.

     Гидролазы – ферменты, катализирующие гидролитическое расщепление различных субстратов (при участии молекул воды). В зависимости от этого среди них различают эстеразы, расщепляющие сложноэфирную связь между карбоновыми кислотами (липаза) тиоловых эфиров, фосфоэфирную связь, гликозидазы, расщепляющие гликозидные связи, пептид - гидролазы, действует на пептидную связь и другие.

     Лиазы. К этой группе относятся ферменты, способные отщеплять различные группы от субстрата негидролитические гидролитическим путём с образованием двойных связей или, напротив, присоединять группы к двойной связи. При расщеплении образуется Н2О или СО2 или большие остатки - например ацетил - СоА. Лиазы играют весьма важную роль в процессе обмена веществ.

     Изомеразы – ферменты, катализирующие превращение изомерных форм друг в друга, то есть осуществляющие внутримолекулярное превращение различных групп. К ним относятся не только ферменты, стимулирующие реакции взаимных переходов оптических и геометрических изомеров, но и такие, которые могут способствовать превращению альдоз в кетозы или перемещению эфирной связи и другие.

     Лигазы. Раньше эти ферменты не отделяли от лиаз, так как реакция последних часто идёт в двух направлениях, однако недавно было выяснено, что синтез и распад в большинстве случаев происходит под влиянием различных ферментов, и на этом основании выделен отдельный класс лигаз (синтетаз). Ферменты, обладающие двойным действием, получили название бифункциональных. Лигазы принимают участие в реакции соединения двух молекул, то есть синтетических процессах, сопровождающихся расщеплением макроэнергетических связей АТФ или других макроэргов. 

     4. Гормоны передней  доли гипофиза.

     В гипофизе выделяют переднюю (аденогипофиз) и заднюю (нейрогипофиз) доли. У многих животных представлена также промежуточная доля (pars intermedia), однако у человека она практически отсутствует. В аденогипофизе вырабатывается 6 гормонов, из них 4 являются тропными (адренокортикотропный гормон, или кортикотропин, тиреотропный гормон, или тиреотропин и 2 гонадотропина — фолликулостимулирующий и лютеинизирующий гормоны), а 2 — эффекторными (соматотропный гормон, или соматотропин, и пролактин).

     В нейрогипофизе происходит депонирование окситоцина и антидиуретического гормона (вазопрессин). Синтез этих гормонов осуществляется в супраоптическом и паравентрикулярном ядрах гипоталамуса. Нейроны, составляющие эти ядра, имеют длинные аксоны, которые в составе ножки гипофиза образуют гипоталамо-гипофизарный тракт и достигают задней доли гипофиза. Синтезированные в гипоталамусе окситоцин и вазопрессин доставляются в нейрогипофиз путем аксонального транспорта с помощью специального белка-переносчика, получившего название «нейрофизин».

     Гормоны аденогипофиза. Адренокортикотропный гормон, или кортикотропин. Основной эффект этого гормона выражается в стимулирующем действии на образование глюкокортикоидов в пучковой зоне коркового вещества надпочечников. В меньшей степени выражено влияние гормона на клубочковую и сетчатую зоны. Кортикотропин ускоряет стероидогенез и усиливает пластические процессы (биосинтез белка, нуклеиновых кислот), что приводит к гиперплазии коркового вещества надпочечников. Оказывает также вненадпочечниковое действие, проявляющееся в стимуляции процессов липолиза, анаболическом влиянии, усилении пигментации. Влияние на пигментацию обусловлено частичным совпадением аминокислотных цепей кортикотропина и меланоцитостимулирующего гормона.

     Выработка кортикотропина регулируется кортиколиберином гипоталамуса.

     Тиреотропный гормон, или тиреотропин. Под влиянием тиреотропина стимулируется образование в щитовидной железе тироксина и трийодтиронина. Тиреотропин увеличивает секреторную активность тиреоцитов за счет усиления в них пластических процессов (синтез белка, нуклеиновых кислот) и увеличенного поглощения кислорода. В результате ускоряются практически все стадии биосинтеза гормонов щитовидной железы. Под влиянием тиреотропина активируется работа «йодного насоса», усиливаются процессы йодирования тирозина. Кроме того, увеличивается активность протеаз, расщепляющих тиреоглобулин, что способствует высвобождению активного тироксина и трийодтиронина в кровь.Выработка тиреотропина регулируется тиреолиберином гипоталамуса.

     Гонадотропные гормоны, или гонадотропины. В аденогипофизе вырабатывается 2 гонадотропина — фолликулостимулирующий (ФСГ) и лютеинизирующий (ЛГУ). ФСГ действует на фолликулы яичников, ускоряя их созревание и подготовку к овуляции. Под влиянием ЛГ происходит разрыв стенки фолликула (овуляция) и образуется желтое тело. ЛГ стимулирует выработку прогестерона в желтом теле. Оба гормона влияют также на мужские половые железы. ЛГ действует на яички, ускоряя выработку тестостерона в интерстициальных клетках — гландулоцитах (клетки Лейдига).ФСГ действует на клетки семенных канальцев, усиливая в них процессы сперматогенеза. Регуляция секреции гонадотропинов осуществляется гипоталамическим гонадолиберином. Существенное значение имеет также механизм отрицательной обратной связи — секреция обоих гормонов тормозится при повышенном содержании эстрогенов и прогестерона в крови; выработка ЛГ уменьшается при увеличении продукции тестостерона.

Информация о работе Биохимия