Химия нуклеиновые кислоты

Автор работы: Пользователь скрыл имя, 23 Марта 2012 в 09:55, доклад

Краткое описание

Нуклеиновые кислоты открыты в 1869-72 Ф. Мишером в ядрах (отсюда назв.: лат. nucleus-ядро) клеток гноя и в сперме лосося. В 1889 Р. Альтман выделил их в чистом виде (им же предложен термин "нуклеиновые кислоты"). В 1944 О. Эйвери показал, что с помощью ДНК наследств. признаки м. б. переданы от одной клетки к другой и что ДНК, т. обр., является "в-вом наследственности". Хим. строение нуклеиновых кислот изучалось школами А. Косселя, П. Левина, Дж. Гулленда и А. Тодда и было окончательно установлено к нач. 50-х гг. Макромол. структура ДНК (двойная спираль) установлена в 1953 Дж. Уотсоном и Ф. Криком на основании данных рентгеноструктурного анализа, полученных Р. Франклин и М. Уилкинсом. Нуклеотидный состав ДНК и РНК из многих объектов изучен Э. Чаргаффом и А. Н.

Содержание работы

Введение 2
Состав нуклеиновых кислот 4
Состав РНК 6
Природа межнуклеотидных связей 7
Значение нуклеиновых кислот 8
Аденозинфосфоорные кислоты 9
Полифосфаты 12
цАМФ 13

Содержимое работы - 1 файл

Химия Реферат Данжаев.docx

— 272.75 Кб (Скачать файл)

Существует  два типа нуклеиновых кислот: ДНК  и РНК. ДНК (дезоксирибонуклеиновая кислота) - биологический полимер, состоящий  из двух полинуклеотидных цепей, соединенных  друг с другом Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин(А) или тимин (Т), цитозин (Ц) или гуанин (Г); пятиатомный сахар пентозу - дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов. В каждой цепи нуклеотиды соединяются путем образования ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты последующего нуклеотида. Объединяются две цепи в одну молекулу при помощи водородных связей, возникающих между азотистыми основаниями, входящими в состав нуклеотидов, образующих разные цепи. Количество таких связей между разными азотистыми основаниями неодинаково и вследствие этого они могут соединяться только попарно: азотистое основание А одной цепи полинуклеотидов всегда связано двумя водородными связями с Т другой цепи, а Г - тремя водородными связями азотистым основанием Ц противоположной полинуклеотидной цепочки. Такая способность к избирательному соединению нуклеотидов называется комплиментарностью. Комплиментарное взаимодействие нуклеотидов приводит к образованию пар нуклеотидов. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар и остаток фосфорной кислоты.

РНК (рибонуклеиновая  кислота), так же как ДНК, представляет собой полимер мономерами которого служат нуклеотиды. Азотистые основания те же самые, что входят в состав ДНК (аденин, гуанин, цетозин); четвертое - урацил - присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК содержат вместо дизоксирибозы другую пентозу - рибозу. В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого.

Известны  двух- и одноцепочные молекулы рибонуклеиновой кислоты. Двухцепочные РНК служат для хранения и воспроизведения наследственной информации у некоторых вирусов, т.е. выполняют у них функции хромосом. Одноцепочные РНК осуществляют перенос информации о последовательности аминокислот в белках от хромосомы к месту их синтеза и участвуют в процессах синтеза.

Существует  несколько видов одноцепочных РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Основную часть РНК цитоплазмы (80-90%) составляет рибосомальная РНК (рРНК). Она содержится в органоидах клетки, осуществляющих синтез белков, - рибосомах. Размеры молекул рРНК относительно невелики, они содержат от 3 до 5 тысяч нуклеотидов. Другой вид РНК - информационные (иРНК), переносящие от хромосом к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Транспортные РНК (рРНК) включают 76-85 нуклеотидов и выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, “узнают” (по принципу комплиментарности) участок иРНК, соответствующий переносимой аминокислоте, осуществляет аминокислоты на рибосоме.

 

Аденозинфосфоорные кислоты

Адениновые рибонуклеотиды , производные аденозина, содержащие остатки ортофосфорной или полифосфорных к-т в разл. положениях рибозного кольца. Большинство А.к. имеют важное биол. значение; особое место занимают аденозин-5'-фосфорные к-ты моно-, ди- и трифосфорные (n-соотв. 1, 2, 3), обозначаемые АМФ, АДФ, АТФ . К аденозин-5'-фосфорным относятся также менее изученные к-ты с n = 4 и 5. Среди продуктов метаболизма нек-рых коферментов обнаружены аденозин-2',5'- и аденозин-3',5'-дифосфорные к-ты. К А.к. относятся также аденозинмонофосфат циклический и диаденозинтетрафосфорная к-та, играющие регуляторную роль в обмене в-в. При щелочном гидролизе РНК образуется смесь аденозин-2'-и аденозин-З'-монофосфор-ных к-т. Аденозин-5'-фосфорные к-ты имеют характерный оптич. спектр с максимумом в области 260 нм и минимумом при 230 нм. Это к-ты средней силы (рК'а~1).  

Они хорошо раств. в воде, плохо-в спирте, не раств. в большинстве орг. р-рителей. Соли щелочных металлов также раств. в воде (в отличие от солей тяжелых металлов). У АТФ средняя бариевая соль (Ва2АТФ) не раств. в воде, но раств. кислая.

В водных р-рах АДФ п АТФ неустойчивы. При 0°С АТФ стабильна в воде всего неск. часов. При кипячении в течение 10 мин в кислом р-ре АДФ и АТФ полностью расщепляются до АМФ и Н3РО4. Эта р-ция иногда используется для определения "лабильного фосфата". В разб. р-ре щелочи АТФ гидролизуется до АМФ и пирофосфорной к-ты Н4Р2О7. При длит, кипячении АМФ в щелочной или кислой среде образуются рибоза, аденин и фосфорная кислота.

Своб. энергия ( G°) гидролиза АТФ, идущего с отщеплением концевого (терминального) остатка Н3РО4, в стандартных условиях равна — 30,5 кДж/моль при рН 7,0. Близкая величина найдена для гидролиза АТФ с отщеплением Н4Р2О7. Абс. величина G° гидролиза АМФ значительно ниже ( — 12,6 кДж/моль).

Хим. св-ва аденозин-5'-фосфорных к-т определяются также функц. группами остатка аденозина. Так, для А. к. характерно дезаминирование под действием HNO2, приводящее к инозиновым производным. А. к. ацилируются по NH2-и ОН-группам. При галогенировании (обычно бромирова-нии) замещается атом Н в положении 8. Окисление АТФ и АДФ периодатом превращает их в диальдегид, образующийся в результате окислит. расщепления связи между атомами С в положениях 2' и 3'. Алкилируются А.к. обычно в положение 1 и по аминогруппе. Так, при действии 3-меркаптопропионовой к-ты и формальдегида атом Н в группе NH2 замещается на группировку CH2SCH2CH2COOH. N6-Карбоксиметильное производное АТФ получают перегруппировкой N1-карбоксиметил-АТФ, образующейся при р-ции АТФ с иодуксусной к-той. С помощью этиленоксида получают N1-гидроксиэтильные производные А. к. При взаимод. А. к. с хлоруксусным альдегидом по атому N в положении 1 алкилирование сопровождается циклизацией по аминогруппе с образованием трициклич. соед.-производного этеноаденозина; эти в-ва используют в кач-ве флуоресцентных меток при структурно-функциональном исследовании белков и нуклеиновых к-т.

Хим. модификация  прир. А.к. используется для изучения механизма ферментативных р-ций. Модификация позволяет применять эти соед. в кач-ве ингибиторов, для образования ковалентных связей при изучении молекулярного окружения в точках связывания А. к. (так, 2',3'-диальдегидные производные образуют в активном центре ферментов альдиминные связи), для регистрации конформац. переходов в ферментах в ходе р-ции, напр. с помощью флуоресцентных или спиновых меток. Производные А.к. используют также для синтеза биоспецифич. адсорбентов, применяемых при выделении индивидуальных ферментов с помощью аффинной хроматографии, что имеет большое практич. значение в биотехнологии.

АТФ впервые  была выделена из мышц в 1929 К. Ломаном; хим. синтез осуществлен А. Тоддом (1948) путем фосфорилирования АМФ и АДФ с помощью дибензил-хлорфосфата. Выделяют АТФ из скелетных мышц или дрожжей. АМФ и АДФ получают гидролизом АТФ, а АМФ также ферментативным фосфорилированием аденозина.

Для количеств. определения АМФ, АДФ и АТФ в живых организмах используют разл. виды хроматографии, ЯМР-спектроскопию и ферментативные р-ции. наиб. чувствит. метод-люминесцентный люциферин-люциферазный, в к-ром используется выделяемая из светляков люцифераза, катализирующая в присут. АТФ образование из люциферина люминесцирующего соединения. Метод позволяет определять АТФ в концентрации до 10 -13 М.

В живых организмах АТФ, АДФ и АМФ присутствуют в  связанном с белками состоянии  и в виде комплексов с ионами Mg2+ и Са2+. Скелетные мышцы млекопитающих содержат АТФ до 4 г/кг. У человека скорость обмена АТФ составляет ок. 50 кг в сут. Такая интенсивность обмена объясняется тем, что этот нуклеотид занимает центр. место в энергетике живых организмов. Сокращение мышц, биосинтез белков и нуклеиновых к-т, многие др. процессы, идущие с увеличением своб. энергии, сопряжены с гидролизом АТФ. Часть из них проходит с отщеплением от АТФ Н3РО4, другая-Н4Р2О7. В живой клетке G гидролиза АТФ составляет - 50 кДж/моль. Сравнительно высокая абс. величина G° гидролиза двух ангидридных связей в АТФ (макроэргич. связи) обусловливает уникальное положение АТФ в метаболизме.

Исходный  субстрат в биосинтезе АМФ-инозиновая к-та. АМФ, образующаяся также при пирофосфатном расщеплении АТФ, фосфорилируется в организме до АДФ при участии аденилаткиназы. Фосфорилирование АДФ, приводящее к синтезу АТФ в живых организмах, происходит при сопряжении этой р-ции с окислит.-восстановит. р-циями. Различают три типа сопряжения: в гликолизе (локализован в водной фазе клетки, в цитоплазме), при окислит, фосфо-рилировании и фотофосфорилировании в т. наз. сопрягающих мембранах субклеточных частиц (митохондрий и хло-ропластов) и бактерий.

Для сопряжения биохим. р-ций необходимо наличие общего для этих р-ций промежут. соединения (интермедиата). Так, в гликолизе окисление 3-фосфоглицеральдегида до фосфоглицериновой к-ты идет через стадию образования 1,3-дифосфоглицериновой к-ты, являющейся таким "макроэргич. интермедиатом". Ферментативная р-ция этого интермедиата с АДФ приводит к синтезу АТФ. Механизм сопряжения между фосфорилированием АДФ и электронным транспортом в сопрягающих мембранах установлен в 1960-х гг. П. Митчеллом. Было показано, что сопряжение осуществляется через посредство электрохим. потенциала ионов Н+. Особенность электрон-транспортных систем сопрягающих мембран-способность переносить Н + через мембрану. В то же время ферментативный комплекс, катализирующий синтез АТФ,-АТФ-синтетаза, может использовать энергию этого потенциала. Молекулярный механизм трансмембранного транспорта Н+ при окислительном фосфорилировании и фотофосфорилировании пока не выяснен. См. также Гликолиз, Окислительное фосфорилирование.

В высших организмах присутствует белковый комплекс, осуществляющий специфич. перенос через биол. мембраны АТФ в обмен на АДФ (транслоказа адениновых нуклеоти-дов) и являющийся первым хорошо изученным белком-переносчиком. Особая роль аденозин-5'-фосфорных к-т в биоэнергетике обусловливает то, что эти соед. являются также аллостерич. регуляторами ряда ключевых ферментов.

АМФ применяется  в медицине при мышечной дистрофии, стенокардии и спазмах сосудов (мышечно-адениловый препарат). С той же целью иногда используют АТФ.

Полифосфаты

Полифосфаты - полимеры фосфатов, цепочка которых  проходит между другими химическими  группами. Этот тип полимеризации место известный как реакция конденсации. Фосфатные связи - обычно высокоэнергетичные ковалентные связи, что означает, что энергия выделяется при разрушении этих связей самопроизвольно или в результате ферментативного катализа. Часто класс полифосфатов несколько сужают, включая только вещества с формулой

Рисунок 1натрий-3-фосфат

 
Примеры обычных полифосфатов включают натрий-3-фосфат (Na5P3O10)n и Высокополимерные неорганические полифосфаты. В широком понимании термина к ним относят и АТФ (аденозин трифосфат) - полимер с тремя фосфатными группами, и нуклеиновые кислоты.

цАМФ

Циклический аденозинмонофосфат (циклический AMФ, цAMФ, cAMP) — производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например, глюкагона или адреналина), которые не могут проходить через клеточную мембрану.

 

Метаболизм  цAMФ

цAMФ синтезируется аденилатциклазой в ответ на некоторые гормональные стимуляторы; действует как вторичный посредник при клеточном гормональном контроле путем стимуляции протеинкиназ. цАМФ является аллостерическим эффектором протеинкиназ A и ионных каналов. Синтезируется цАМФ мембранными аденилатциклазами (семейство ферментов, катализирующих реакцию циклизации АТФ с образованием цАМФ и неорганического пирофосфата). Расщепление цАМФ с образованием АМФ катализируется фосфодиэстеразами. Ингибируются цАМФ только при высоких концентрациях метилированных производных ксантина, например, кофеина. Аденилатциклазы активируются G-белками (активность которых в свою очередь зависит от метаботропных рецепторов, связанных с G-белками) .

Протеинкиназа А

В неактивном состоянии протеинкиназа A является тетрамером, в котором две К (каталитические) субъединицы самоингибированы регуляторными (R) субъединицами. При связывании цAMФ R-субъединицы диссоциируют из комплекса и происходит активация К-субъединиц. Активированная протеинкиназа А фосфорилирует остатки серина и треонина в более чем 100 различных белках, в том числе во многих ферментах.

 

цAMФ как вторичный посредник в сигнальной трансдукции

цAMФ осуществляет функции вторичного внутриклеточного посредника в действии первичных посредников (веществ, имеющих короткий период биодеградации) — например, ряда гормонов и нейромедиаторов. цAMФ опосредует биологическую функцию гормонов путем активации (инактивации) клеточных протеинкиназ (фосфатаз). Протеинкиназы, в свою очередь, фосфорилируют эффекторные белки и изменяют (увеличивают или уменьшают) их активность.

При активации аденилатциклазы, катализирующей образование цAMФ из АТФ, или блокировании фосфодиэстеразы, осуществляющей деградацию этого цAMФ, концентрация цAMФ в клетке увеличивается. Таким образом, содержание cAMP в клетке определяется соотношением активностей этих двух ферментов. Связь между гормоном или др. химическим сигналом (первый посредник) и цAMФ (второй посредник) осуществляет аденилатциклазный комплекс, включающий рецептор, настроенный на определённый гормон (или др. биологически активное вещество) и расположенный на внешней стороне клеточной мембраны, и аденилатциклазу, расположенную на внутренней стороне мембраны. Гормон, взаимодействуя с рецептором, активирует аденилатциклазу, которая образует цAMФ из АТФ.

Концентрация  цAMФ, образующегося в клетке, превышает концентрацию действующего на клетку гормона в 100 раз. В основе механизма действия цAMФ в тканях животных и человека лежит его взаимодействие с протеинкиназами, например, протеинкиназы А. Связывание цAMФ с регуляторной субъединицей протеинкиназы приводит к диссоциации фермента и активации его каталитической субъединицы, которая, освободившись от регуляторной субъединицы, способна фосфорилировать определённые белки (в том числе ферменты). Изменение свойств этих макромолекул путём фосфорилирования меняет и соответствующие функции клеток. цAMФ играет определённую роль в морфологии, подвижности, пигментации клеток, в кроветворении, клеточном иммунитете, вирусной инфекции и др.

Информация о работе Химия нуклеиновые кислоты