Электрохимические методы анализа и очистки воды

Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 19:18, курсовая работа

Краткое описание

Наиболее широко распространенные в мире методы очистки воды и отработанных водных растворов основаны на моделировании природных процессов - фильтрации, сорбции, ионного обмена. Однако, установки в которых реализованы указанные процессы, нуждаются в регенерации и периодической замене основного рабочего элемента: фильтров, сорбентов, ионообменных смол.
Цель данной работы – рассмотреть электрохимические методы анализа и очистки сточных вод, определить их особенности и преимущества над другими методами.

Содержание работы

1.Введение…………………………………………………………………………………..….2
2. Электрохимические методы анализа воды……………………………………………..…3
2.1 Классификация электрохимических методов анализа ………………………….…3
2.2 Потенциометрия. Потенциометрическое титрование……………………………...4
2.3 Кондуктометрия. Кондуктометрическое титрование………………………………7
2.4 Кулонометрия. Кулонометрическое титрование……………………………………9
3. Электрохимические методы очистки воды………………………………………………..11
3.1 Теоретические основы электрохимических методов очистки ………………….....11
3.2 Анодное окисление и катодное восстановление………………………………….....12
3.3 Электрокоагуляция………………………………………………………………….....15
3.4 Электрофлотация………………………………………………………………………18
3.5 Электродиализ………………………………………………………………………....19
4. Заключение…………………………………………………………………………………...21
5. Список литературы…………………………………………………………………………..22

Содержимое работы - 1 файл

Электрохимические методы анализа и очистки воды.doc

— 299.50 Кб (Скачать файл)

Примером реакции, обеспечивающей удаление загрязнения в газовую  фазу, является очистка от нитрата  аммония. При постановлении нитрата  аммония на графитовом электроде он превращается в нитрит аммония, который разлагается при нагревании до элементного азота:

Повышенная токсичность  органических веществ связана с  наличием в молекуле атомов галогенов, альдегидной, амино-, нитро- или нитрозогрупп. Таким образом, продукты восстановления, например, альдегидов и кетонов—спирты и углеводороды, будут менее токсичны. Потеря атома галогена приводит к такому же результату:

.

3.3 Электрокоагуляция.

При прохождении сточной  воды через межэлектродное пространство электролизера происходит электролиз воды, поляризация частиц, электрофорез, окислительно-восстановительные процессы, взаимодействие продуктов электролиза друг с другом.

При использовании нерастворимых  электродов коагуляция может происходить  в результате электрофоретических явлений и разряда заряженных частиц на электродах, образования в растворе веществ (хлор, кислород), разрушающих сольватные соли на поверхности частиц. Такой процесс можно использовать для очистки вод при невысоком содержании коллоидных частиц и низкой устойчивости загрязнений.

Для очистки промышленных сточных вод, содержащих высокоустойчивые загрязнения, проводят электролиз с  использованием растворимых стальных или алюминиевых анодов. Под действием  тока происходит растворение металла, в результате чего в воду переходят катионы железа или алюминия, которые, встречаясь с гидроксидными группами, образуют гидроксиды металлов в виде хлопьев. Наступает интенсивная коагуляция.

На процесс электрокоагуляции  оказывает влияние материал электродов, расстояние между ними, скорость движения сточной воды между электродами, ее температура и состав, напряжение и плотность тока. С повышением концентрации взвешенных веществ более 100 мг/л эффективность электрокоагуляции снижается. С уменьшением расстояния между электродами расход энергии на анодное растворение металла уменьшается. Теоретический расход электроэнергии для растворения 1 г железа составляет 2,9 Вт-ч, а 1 г алюминия — 12 Вт-ч. Электрокоагуляцию рекомендуют проводить в нейтральной или слабощелочной среде при плотности тока не более 10 А/м2, расстоянии между электродами не более 20 мм и скорости движения воды не менее 0,5 м/с.

Достоинства метода электрокоагуляции: компактность установок и простота управления, отсутствие потребности в реагентах, малая чувствительность к изменениям условий проведения процесса очистки (температура, рН среды, присутствие токсичных веществ), получение шлама с хорошими структурно-механическими свойствами. Недостатком метода является повышенный расход металла и электроэнергии. Электрокоагуляция находит применение в пищевой, химической и целлюлозно-бумажной промышленности.

 

 

 

Технологическая схема очистки  сточных вод электрокоагуляцией показана на рис3.

Рис. 3. Схема электрокоагуляционной установки:

1 — усреднитель; 2 — бак для приготовления раствора; 3 — источник постоянного тока; 4 — электрокоагулятор; 5 — отстойник; 6 — аппарат для обезвоживания осадка.

 

Обезвоживание осадка проводят в фильтр-прессе или центрифуге. Выделяющийся в процессе газообразный водород можно использовать для флотации гидроксида. С этой целью в схеме очистки используют электрокоагуляторы-флотаторы, или специальные флотационные аппараты, например гидроциклоны-флотаторы. Замена отстойника на флотаторы позволяет значительно уменьшить габариты установки, сократить капитальные затраты и получить менее влажный осадок гидроксида.

Электрокоагуляционную очистку сточных вод можно  использовать для очистки от эмульсий нефтепродуктов, масел, жиров (электрокоагулятор  представляет собой ванну с электродами). Эффективность очистки от нефтепродуктов составляет: от масел 54—68%, от жиров 92—99% при удельном расходе электроэнергии 0,2—3,0 Вт-ч/м3.

На практике наиболее широко используют безнапорные пластинчатые электрокоагуляторы, направление движения жидкости в которых может быть горизонтальным и вертикальным. Они могут быть однопоточными, многопоточными и смешанными. При многопоточной схеме движения вода проходит одновременно через промежутки между электродами (параллельное соединение каналов). При однопоточной схеме вода проходит между электродами последовательно (последовательное соединение каналов), что уменьшает пассивацию электродов.

Полезный объем ванны  электрокоагулятора (объем сточных  вод, постоянно находящихся в  аппарате) равен:

Расход железа на процесс:

 

Ток, обеспечивающий растворение железа за время t, равен:

Рабочая поверхность  анодов и общее их число определяют из соотношений:

Общее число электродов (катодов и анодов) составляет:

Общий объем ванны  электролизера равен:

где Q — расход сточных вод, мз/ч; t — время процесса, ч; d — удельный расход железа на удаление определенного загрязнения, г/ч; с — исходная концентрация иона металла, загрязняющего воду, г/м3; k — электрохимический эквивалент железа, равный 1,042 г/(А-ч); h— выход железа по току, % (при обработке воды с рН=3—5 близок к 100%); i—оптимальная плотность тока, А/м2; Si — площадь одного анода, м2; Vэ—объем всех электродов.

Толщину электродов, их ширину, межэлектродное расстояние определяют с учетом конструктивных особенностей, а также заданной скорости движения воды.

Количество газа, генерируемого  в электрофлотаторе, определяют по формуле:

где Vo— объем газа, выделяющегося при нормальных условиях, м3; qн2 - количество газа, выделяющегося при прохождении 1 кА-ч (электрохимический эквивалент), м3; I —ток, проходящий через аппарат, кА; t —время обработки, ч; Bt - коэффициент использования тока, доли единицы; n — число пар электродов; qH2 —    0,418 м3/кА-ч).

Объем влажного газа в реальных условиях равен:

где р — парциальное давление насыщенных водяных паров (при 20 °С равное 2,3 кПа); Р—атмосферное давление, кПа; 101,3 — давление при нормальных условиях, кПа.

 

 

 

3.4 Электрофлотация

В этом процессе очистка  сточных вод от взвешенных частиц проходит при помощи пузырьков газа, образующихся при электролизе воды. На аноде возникают пузырьки кислорода, а на катоде — водорода. Поднимаясь в сточной воде, эти пузырьки флотируют взвешенные частицы. При использовании растворимых электродов происходит образование хлопьев коагулянтов и пузырьков газа, что способствует более эффективной флотации.

Основную роль при  электрофлотации играют пузырьки, образующиеся на катоде. Размер пузырьков водорода значительно меньше, чем при других методах флотации. Он зависит от краевого угла смачивания и кривизны поверхности электродов. Диаметр пузырьков меняется от 20 до 100 мкм. Из пересыщенных растворов мельчайшие пузырьки выделяются на поверхности частичек загрязнений и тем самым способствуют эффекту флотации. Для получения пузырьков требуемого размера необходим правильный подбор материала, диаметра проволоки катода и плотности тока. Оптимальное значение плотности тока 200—260 А/м2, газосодержание—около 0,1%.

При небольших объемах  сточных вод (10—15 м3/ч) электрофлотационные установки могут быть однокамерными (рис. 4), при больших — следует применять двухкамерные установки, которые могут быть горизонтальными и вертикальными.

Рис. 4. Схема однокамерной электрофлотационной установки (1—корпус; 2—электроды).

Они состоят из электродного отделения и отстойной части. Схема горизонтального электрофлотатора показана на рис. 5. Сточная вода поступает в успокоитель, который отделен от электродного отделения решеткой. Проходя через межэлектродное пространство, вода насыщается пузырьками газа. Всплывание пузырьков с частицами происходит в отстойной части. Всплывший шлам перемещается скребком в шлакоприемник, откуда его удаляют. Расчет установки сводится к определению общего объема электродного отделения и отстойной части, а также необходимых конструктивных и электрических параметров.

Рис. 5. Горизонтальный электрофлотатор:

1—впускная камера; 2— электроды; 3— скребок; 4 — шламоприемник; 5 — патрубок выпуска осадка.

3.5 Электродиализ

Процесс очистки сточных вод  электродиализом основан на разделении ионизированных веществ под действием электродвижущей силы, создаваемой в растворе по обе стороны мембран. Этот процесс широко используют для опреснения соленых вод. В последнее время его начали применять и для очистки промышленных сточных вод.

Процесс проводят в электродиализаторах, простейшая конструкция которых состоит из трех камер, отделенных одна от другой мембранами (рис. 6, а). В среднюю камеру заливают раствор, а в боковые, где расположены электроды, — чистую воду. Анионы током переносятся в анодное пространство. На аноде выделяется кислород и образуется кислота. Одновременно катионы переносятся в катодное пространство. На катоде выделяется водород и образуется щелочь. По мере прохождения тока концентрация солей в средней камере уменьшается до тех пор, пока не станет близкой к нулю.

За счет диффузии в среднюю камеру поступают ионы Н+ и ОН-, образуя воду. Этот процесс замедляет перенос ионов соли к соответствующим электродам.

Рис. 6. Схемы электродиализаторов  с пористыми диафрагмами (а) и  ионитовыми мембранами (б).

При использовании электрохимически активных (ионообменных) диафрагм повышается эффективность процесса и снижается  расход электроэнергии. Ионообменные мембраны проницаемы только для ионов, имеющих заряд того же знака, что  и у подвижных ионов.

В электродиализаторе (рис. 6, б) имеется две мембраны. Одна из них — анионообменная и пропускает в анодную зону анионы. Другая мембрана— катионообменная расположена со стороны катода и пропускает катионы в катодное пространство.

Обычно электролизеры  для очистки воды делают многокамерными (100— 200 камер) с чередующимися катионо- и анионопроницаемыми мембранами. Электроды помещают в крайних камерах. В многокамерных аппаратах достигается наибольший выход по току.

Для обессоливания воды применяют гомогенные и гетерогенные мембраны. Гомогенные мембраны состоят только из одной смолы и имеют малую механическую прочность. Гетерогенные мембраны представляют собой порошок ионита, смешанный со связующим веществом — каучуком, полистиролом, метилмеркаптаном и др. Из этой смеси вальцеванием получают пластины. Мембраны должны обладать малым электрическим сопротивлением. На эффективность работы электродиализатора большое влияние оказывает расстояние между мембранами. Обычно оно составляет 1—2 мм. Во избежание засорения мембран сточные воды перед подачей в электродиализатор должны быть очищены от взвешенных и коллоидных частиц.

Расход энергии при  очистке воды, содержащей 250 мг/л примесей, до остаточного содержания солей 5 мг/л составляет 7 кВт-ч/м3. С увеличением содержания солей в воде удельный расход энергии возрастает.

Основным недостатком  электродиализа является концентрационная поляризация, приводящая к осаждению солей на поверхности мембран и снижению показателей очистки.

 

 

 

 

 

 

 

 

 

 

Заключение

Электрохимические методы анализа являются одними из стаpейших ФХМА (некоторые описаны в конце 19 века). Их достоинством является высокая точность и сравнительная простота как оборудования, так и методик анализа. Высокая точность определяется весьма точными закономерностями используемыми в ЭМА, напpимеp, закон Фаpадея. Большим удобством является то, что в ЭМА используют электрические воздействия, и то, что результат этого воздействия (отклик) тоже получается в виде электрического сигнала. Это обеспечивает высокую скорость и точность отсчета, открывает широкие возможности для автоматизации. ЭМА отличаются хорошей чувствительностью и селективностью, в ряде случаев их можно отнести к микроанализу, так как для анализа иногда достаточно менее 1 мл pаствоpа.

Достоинством электрохимических  методов очистки является их высокая эффективность. Теоретические расчеты показывают, что потенциальные возможности электрохимического кондиционирования воды (очистки, умягчения, опреснения, обеззараживания и т.д.) более чем в 100 раз превосходят фильтрационные, сорбционные и ионообменные методы по экономичности, скорости и качеству. Кроме того, электрохимические реакции позволяют без дополнительных затрат химических реагентов преобразовать пресную или слабосолоноватую природную воду в высокоактивный технологический раствор, обладающий практически любыми необходимыми функциональными свойствами.

Именно по этим причинам электрохимические методы анализа  и очистки воды получили широкое  распространение и применение во всем мире.

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы

  1. В.Д.Пономарев / Аналитическая химия/ часть 2/ Москва «Высшая  школа»/ 1982 г.
  2. Очистка производственных сточных вод: Учебное пособие для студентов вузов/Яковлев С. В., Карелин Я. А., Ласков Ю. М., Воронов Ю. В. М.: Стройиздат, 1979. 320 с.
  3. Чантурия В.А., Назарова Г.Н. Электрохимическая технология в обогатительно-гидрометаллургических процессах. - М.: Наука, 1977. - 160с.
  4. http://wikipedia.ru/- интернет статьи

 

 




Информация о работе Электрохимические методы анализа и очистки воды