Производство серной кислоты

Автор работы: Пользователь скрыл имя, 20 Января 2011 в 02:41, контрольная работа

Краткое описание

1. Товарные и определяющие технологию свойства серной кислоты.
2. Сырьевые источники получения серной кислоты.
3. Краткое описание современных промышленных способов получения серной кислоты. Пути совершенствования и перспективы развития производства.
4. Физико-химические свойства системы, положенной в основу химико-технологического процесса окисления сернистого ангидрида.
5. Аппаратурно–технологическая схема тонкой очистки сернистого газа и окисления сернистого ангидрида в четырехслойном контактном аппарате с фильтрующими слоями катализатора.
6. Материальный баланс 1 ступени контактного аппарата окисления сернистого газа.

Содержимое работы - 1 файл

Производство серной кислоты.doc

— 494.50 Кб (Скачать файл)

     1. Товарные и определяющие  технологию свойства  серной кислоты. 

     Серная  кислота - один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при  обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.

     В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава: п SО3 · т Н2О.

     При п = т = 1 это моногидрат серной кислоты (100 % -ная серная кислота), при т > п – водные растворы моногидрата, при т < п – растворы оксида серы (VI) в моногидрате (олеум).

     Моногидрат  серной кислоты – бесцветная маслянистая  жидкость с температурой кристаллизации 10,37 оС, температурой кипения 296,2 оС и плотностью 1,85 т/м3. С водой и оксидом серы (VI) он смешивается во всех отношениях, образуя гидраты состава Н24 · Н2О, Н24 · 2Н2О, Н24 · 4Н2О и соединения с оксидом серы Н24 · SО3 и Н24 ·2SО3

     Эти гидраты и соединения с оксидом  серы имеют различные температуры кристаллизации и образуют ряд эвтектик. Некоторые из этих эвтектик имеют температуру кристаллизации ниже нуля или близкие к нулю. Эти особенности растворов серной кислоты учитываются при выборе ее товарных сортов, которые по условиям производства и хранения должны иметь низкую температуру кристаллизации.

     Температура кипения серной кислоты также  зависит от ее концентрации, то есть состава системы «оксид серы (VI) – вода». С повышением концентрации водной серной кислоты температура ее кипения возрастает и достигает максимума 336,5 оС при концентрации 98,3 %, что отвечает азеотропному составу, а затем снижается. Температура кипения олеума с увеличением содержания свободного оксида серы (VI) снижается от 296,2 оС (температура кипения моногидрата) до 44,7 оС, отвечающей температуре кипения 100 %-ного оксида серы (VI).

     При нагревании паров серной кислоты  выше 400 оС она подвергается термической диссоциации по схеме:

     400оС                          700 оС

     2 Н24   <=>     2Н2О + 2SО3  <=> 2Н2О + 2SО2 + О2.

     Среди минеральных кислот серная кислота  по объему производства и потребления  занимает первое место. Мировое производство ее за последние 25 лет выросло более чем в три раза и составляет в настоящее время более 160 млн. т в год.

     Области применения серной кислоты и олеума весьма разнообразны. Значительная часть ее используется в производстве минеральных удобрений (от 30 до 60 %), а также в производстве красителей (от 2 до 16 %), химических волокон ( от 5 до 15 %) и металлургии (от 2 до 3 %). Она применяется для различных технологических целей в текстильной, пищевой и других отраслях промышленности. На рис. 1 представлено применение серной кислоты и олеума в народном хозяйстве.

 

     

     Производство хроматов             Производство сульфатов             Минеральные удобрения             Сульфат аммония
 
     Взрывчатые вещества             Травление металлов
 
     Производство кислот, спиртов, эфиров и других органических веществ             Минеральные кислоты 

     Н3РО4

     НF

 
     Серная кислота
     Органические красители             Металлургия цветных металлов
     Производство глюкозы  и патоки             Минеральные пигменты и краски
     Химические волокна, текстильная промышленность             Очистка нефтепродуктов и минеральных масел
 

     Рис. 1. Применение серной кислоты.

 

      2. Сырьевые источники  получения серной  кислоты. 

     Сырьем  в производстве серной кислоты могут  быть элементарная сера и различные серусодержащие соединения, из которых может быть получена сера или непосредственно оксид серы (IV).

     Природные залежи самородной серы невелики, хотя кларк ее равен 0,1 %. Чаще всего сера находится в природе в форме  сульфидов металлов и сульфатов метало, а также входит в состав нефти, каменного угля, природного и попутного газов. Значительные количества серы содержатся в виде оксида серы в топочных газах и газах цветной металлургии и в виде сероводорода, выделяющегося при очистке горючих газов.

     Таким образом, сырьевые источники производства серной кислоты достаточно многообразны, хотя до сих пор в качестве сырья  используют преимущественно элементарную серу и железный колчедан. Ограниченное использование таких видов сырья, как топочные газы тепловых электростанций и газы медеплавильного производства, объясняется низкой концентрацией в них оксида серы (IV).

     При этом доля колчедана в балансе  сырья уменьшается, а доля серы возрастает.

     В общей схеме сернокислотного  производства существенное значение имеют две первые стадии – подготовка сырья и его сжигание или обжиг. Их содержание и аппаратурное оформление существенно зависят от природы сырья, которая в значительной степени, определяет сложность технологического производства серной кислоты.

 

      3. Краткое описание  современных промышленных  способов получения серной кислоты. Пути совершенствования и перспективы развития производства. 

     Производство  серной кислоты из серусодержащего сырья включает несколько химических процессов, в которых происходит изменение степени окисления сырья и промежуточных продуктов. Это может быть представлено в виде следующей схемы:

     

     где I – стадия получения печного  газа (оксида серы (IV)),

     II – стадия каталитического окисления  оксида серы (IV) до оксида серы (VI) и абсорбции его (переработка в серную кислоту).

     В реальном производстве к этим химическим процессам добавляются процессы подготовки сырья, очистки печного  газа и другие механические и физико-химические операции. В общем случае производство серной кислоты может быть выражено в следующем виде:

     Сырье подготовка сырья сжигание (обжиг) сырья

      очистка печного газа контактирование абсорбция

     контактированного газа СЕРНАЯ КИСЛОТА

     Конкретная  технологическая схема производства зависит от вида сырья, особенностей каталитического окисления оксида серы (IV), наличия или отсутствия стадии абсорбции оксида серы (VI).

     В зависимости от того, как осуществляется процесс окисления SО2 в 3, различают два основных метода получения серной кислоты.

     В контактном методе получения серной кислоты процесс окисления SО2 в 3 проводят на твердых катализаторах.

     Триоксид  серы переводят в серную кислоту на последней стадии процесса – абсорбции триоксида серы, которую упрощенно можно представить уравнением реакции:

     3 + Н2О Н24

     При проведении процесса по нитрозному (башенному) методу в качестве переносчика кислорода используют оксиды азота.

     Окисление диоксида серы осуществляется в жидкой фазе и конечным продуктом является серная кислота:

     3 + N2О3 + Н2О   Н24 + 2NО

     В настоящее время в промышленности в основном применяют контактный метод получения серной кислоты, позволяющий использовать аппараты с большей интенсивностью.

     Рассмотрим  процесс получения серной кислоты  контактным методом из двух видов сырья: серного (железного) колчедана и серы.

     1) Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:

     - окисление дисульфида железа  пиритного концентрата кислородом  воздуха:

     4FеS2 + 11О2 = 2Fе2S3 + 8SО2,

     - каталитическое окисление оксида  серы (IV) избытком кислорода печного газа:

     2SО2 + О2 2SО3

     - абсорбция оксида серы (VI) с образованием  серной кислоты:

     3 + Н2О Н24

     По  технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

     Принципиальная (структурная) схема этого производства представлена на рис. 2: 

     Рис. 2 Структурная схема производства серной кислоты из флотационного колчедана методом одинарного контактирования.

     I – получение обжигового газа: 1 – обжиг колчедана; 2 – охлаждение газа в котле-утилизаторе; 3 – общая очистка газа, 4 – специальная очистка газа; II – контактирование: 5 – подогрев газа в теплообменнике; 6 – контактирование; III – абсорбция: 7 – абсорбция оксида серы (IV) и образование серной кислоты.

     Обжиг колчедана в токе воздуха представляет собой необратимый некаталитический гетерогенный процесс, протекающий с выделением тепла через стадии термической диссоциации дисульфида железа:

     FеS2 = 2FеS + S2

     и окисления продуктов диссоциации:

     S2 + 2О2 = 2SО2

     4FеS + 7О2 = 2Fе2S3 + 4SО2

     что описывается общим уравнением

     4FеS2 + 11О2 = 2Fе2S3 + 8SО2,

     где ΔН = 3400 кДж.

     Увеличение  движущей силы процесса обжига достигается  флотацией колчедана, повышающей содержание дисульфида железа в сырье, обогащением воздуха кислородом и применением избытка воздуха при обжиге до 30 % сверх стехиометрического количества. На практике обжиг ведут при температуре не выше 1000 оС, так как за этим пределом начинается спекание частиц  обжигаемого сырья, что приводит к уменьшению поверхности их и затрудняет омывание частиц потоком воздуха.

     В качестве реакторов для обжига колчедана  могут применяться печи различной  конструкции: механические, пылевидного  обжига, кипящего слоя (КС). Печи кипящего слоя отличаются высокой интенсивностью (до 10 000 кг/м2·сут), обеспечивают более полное выгорание дисульфида железа (содержание серы в огарке не превышает 0,005 мас. долей) и контроль температуры, облегчают процесс утилизации теплоты реакции обжига. К недостаткам печей КС следует отнести повышенное содержание пыли в газе обжига, что затрудняет его очистку. В настоящее время печи КС полностью вытеснили печи в других типов  в производстве серной кислоты из колчедана.

Информация о работе Производство серной кислоты