Транспорт и накопление металлов в биологических системах. Трансферрин. Ферритин. Церулоплазмин и сывороточный альбумин. Металлотионеины

Автор работы: Пользователь скрыл имя, 04 Апреля 2012 в 15:04, реферат

Краткое описание

Проблема антропогенного загрязнения биосферы отходами промышленных предприятий является очень актуальной. В результате различных геохимических циклов и жизнедеятельности биологических объектов, а также в виду непостоянства внешних условий металлы активно включаются в природные круговороты веществ. При поступлении в водоемы металлы образуют различные комплексные соединения, которые существенно влияют на процессы накопления в компонентах экосистемы. В зависимости от состава водной среды образуются более или менее доступные для биологических объектов соединения металлов, которые накапливаются в живых организмах

Содержимое работы - 1 файл

зачет по биоеорганике.doc

— 146.00 Кб (Скачать файл)

Функции

    Представляет собой белок сферической формы - апоферритин, в ядре которого находится комплекс гидроокиси и фосфата железа. Одна молекула ферритина может содержать до 4000 молекул железа. Ферритин синтезируется в клетках органов РЭС (ретикуло-эндотелиальная система). Содержится во всех клетках тела и жидкостях организма. Наиболее богаты им предшественники эритроцитов в костном мозге, макрофаги и ретикулоэндотелиальные клетки печени; также обнаруживается в слизистой оболочке кишечника и в плазме. Включение железа в его состав требует окисления Fe 2+ в Fe3+. В физиологических условиях метаболизма железа ферритин играет важную роль в поддержании железа в растворимой, нетоксичной и биологически полезной форме. В результате полимеризации растворимого ферритина образуется нерастворимый гемосидерин. Ферритин сыворотки содержит 20 - 25% железа; его концентрация - хороший показатель запасов железа у здоровых людей и при неосложненных железодефицитных состояниях. Во время беременности уровень ферритина может снижаться постепенно, на 50% к 20 - й неделе, на 70% в третьем триместре беременности. В условиях острого воспаления повышенный уровень сывороточного ферритина может не только отражать количество железа в организме, но явиться проявлением острофазного ответа, так как ферритин является одним из острофазных белков. Тем не менее, если у пациента действительно имеется дефицит железа, острофазное повышение трансферрина не бывает значительным. При состояниях с избытком железа и некоторых хронических заболеваниях ферритин сыворотки не позволяет правильно оценить запасы доступного для обмена железа.

    Помимо использования в качестве показателя запасов железа в организме, определение концентрации ферритина важно для дифференциальной диагностики железодефицитной анемии и анемии хронических заболеваний (анемии, сопровождающей инфекционные, ревматические и опухолевые заболевания). Одним из основных механизмов анемии хронических заболеваний является перераспределение железа в клетки макрофагальной системы, активирующейся при воспалительных (инфекционных и неинфекционных) или опухолевых процессах. Железо накапливается в макрофагах в виде ферритина, перенос его от ферритина к трансферрину нарушается, что влечет за собой снижение уровня сывороточного железа. В этих условиях ошибочный диагноз железодефицитной анемии и назначение препаратов железа (парентерально) может привести к развитию вторичного гемосидероза и усугублению положения больного. При онкопатологии, особенно опухолевых и метастатических поражениях костного мозга, ферритин служит своеобразным опухолевым маркером.

   Существует также апоферритин (ферритин без железа), который выглядит в виде полого шара с диаметром 13 нм, с центральной полостью в диаметре 6 нм, где хранится железо, и которая открывается наружу посредством 6 каналов (через которые входит и выходит железо), там же в полости находится белковое покрытие, состоящее из 24 молекул, представленное из двух отличающихся субъединиц: H (тяжелая) и L (легкая) При дефиците железа уровень ферритина снижается до появления анемии/других изменений крови.

Церулоплазмин

    Церулоплазмин(ферроксидаза) — медь-содержащий белок (гликопротеин), присутствующий в плазме крови. В церулоплазмине содержится около 95 % общего количества меди сыворотки крови человека. Врожденный дефицит церулоплазмина приводит к дефектам развития головного мозга и печени. Был описан в 1948 году.

   Церулоплазмин – это гликопротеид a2-глобулиновой фракции сыворотки крови человека. Выполняет в организме ряд важных биологических функций:

1.      повышает стабильность клеточных мембран;

2.      участвует в иммунологических реакциях;

3.      ионном обмене;

4.      оказывает антиоксидантное действие;

5.      тормозит перекисное окисление липидов;

6.      стимулирует гемопоэз.

Физические свойства церулоплазмина человека

     Церулоплазмин человека, благодаря входящим в его состав ионам меди, имеет голубой цвет. Средняя молекулярная масса колеблется в диапазоне 150 000—160 000 г/моль. На одну молекулу приходится 6-7 ионов меди (Cu+2).До внедрения меди в белок он называется апоцерулоплазмин, после — холоцерулоплазмин. Отмечен альтернативный сплайсинг человеческого гена CP. Основные аминокислоты церулоплазмина: аспарагиновая, глутаминовая, треонин, глицин, лейцин.

Физиологическая роль

    Церулоплазмин обнаруживается не только в плазме человека и приматов, но и у свиньи, лошади, козы, оленя, собаки, кошки и других животных. Белок играет важную ферментативную роль — он катализирует окисление полифенолов и полиаминов в плазме.

     Синтез церулоплазмина в печени осуществляют гепатоциты и скорость этого процесса регулируется гормонами. На протяжении всей жизни уровень этого белка в плазме остается стабильным, за исключением неонатального этапа и периода беременности у женщин.

     Церулоплазмин не проникает либо слабо проникает через гематоэнцефалический барьер. В мозге человека белок производится определёнными популяциями глиальных клеток, связанных с микрососудами, а в сетчатке глаза — клетками внутреннего нуклеарного слоя. Астроцитами синтезируется особая форма церулоплазмина, порождённая альтернативным сплайсингом и содержащая GPI-якорь, она предположительно необходима для выведения железа из клеток ЦНС.

Клиническое значение

    Сниженные уровни церулоплазмина отмечаются при болезни Вильсона — Коновалова и болезни Менкеса. В первом случае это обусловлено нарушением процесса «нагрузки» апоцерулоплазмина медью вследствие мутации гена ATP7B. Во втором случае нарушен захват меди в кишечнике из-за мутаций гена ATP7A. Концентрация церулоплазмина также возрастает при воспалительных процессах, травмах. В ряде исследований отмечаются повышенные уровни церулоплазмина у больных шизофренией. В единственном на данный момент небольшом исследовании лиц с обсессивно-компульсивным расстройством также были отмечены повышенные уровни церулоплазмина.

    Церулоплазмин может действовать как прооксидант или как антиоксидант в зависимости от наличия других факторов. В присутствии супероксида (например, в воспаленном сосудистом эндотелии), он выступает катализатором окисления липопротеидов низкой плотности. На основании результатов эпидемиологических исследований, церулоплазмин рассматривается как независимый фактор риска сердечно-сосудистых заболеваний.

Сывороточный альбумин

   Альбумин, тип водорастворимого белка, присутствующего в тканях и жидкостях животного происхождения. При нагреве сворачивается. Основными формами альбумина являются белок в яйцах, в молоке и в крови.

    Наиболее известный вид альбумина - сывороточный альбумин. Он содержится в крови в сыворотке (отсюда название), но он также может встречаться в других жидкостях (например, в спинно-мозговой жидкости). Сывороточный альбумин синтезируется в печени и составляет большую часть среди всех сывороточных белков. Альбумин, содержащийся в крови человека, называется человеческий сывороточный альбумин, он составляет около 60 % от всех белков, содержащихся в плазме крови.

     Общая площадь поверхности множества мелких молекул сывороточного альбумина очень велика, поэтому они особенно хорошо подходят для выполнения функции переносчиков многих транспортируемых кровью и плохо растворимых в воде веществ. К веществам, связываемым сывороточным альбумином, относятся билирубин, уробилин, жирные кислоты, соли желчных кислот, некоторые экзогенные вещества - пенициллин, сульфамиды, ртуть, липидные гормоны, некоторые лекарства, такие как варфарин, фенобутазон, хлофибрат и фенитоин и т.д. Одна молекула альбумина может одновременно связать 25-50 молекул билирубина (молекулярная масса 500). По этой причине сывороточный альбумин иногда называют "молекулы-такси". Соревнования между лекарствами при использовании ими "посадочных мест" на молекуле альбумина может вызвать увеличение их активности и лечебного действия.

    Наиболее широко используются человеческий сывороточный альбумин и бычий сывороточный альбумин, часто применяемый в медицинских и молекулярно-биологических лабораториях.

     Нормальный уровень сывороточного альбумина у взрослых составляет от 35 до 50 г/л. Для детей в возрасте менее 3-х лет нормальный уровень - в пределах 25-55 г/л.

     Низкий уровень альбумина (гипоальбуминемия) может возникать из-за болезни печени, нефритического синдрома, ожогов, энтеропатии с потерей белка, недоедания, на поздних сроках беременности, злокачественных новообразований. Приём ретинола (витамина А) в некоторых случаях может повысить уровень альбумина до высоких субнормальных значений (49 г/л). Лабораторные эксперименты показали, что приём ретинола регулирует синтез человеческого альбумина.

     Высокий уровень альбумина (гиперальбуминемия) почти всегда возникает в результате обезвоживания.

Транспортная функция сывороточного альбумина

     Различным структурным классам связываемых веществ (называемых обычно лигандами) на молекуле альбумина соответствуют отдельные специфичные центры связывания. Для многих лигандов альбумина известна направленность их транспорта в организме от одних органов и тканей к другим. Так, например, токсические продукты жизнедеятельности и ионы тяжелых металлов должны быть доставлены в соответствующие органы выделения. Такой же метаболит как триптофан доставляется главным образом в центральную нервную систему, где превращается в нейромедиа-тор серотонин. Можно полагать, что в ряде случаев лиганд может не только избирательно освобождаться в капиллярах определенных тканей, но эта "разгрузка" должна производиться достаточно быстро и полно. Простейшая избирательность "адреса доставки" может быть достигнута снижением равновесной концентрации свободного лиганда в кровеносных капиллярах или межклеточной жидкости тканей-адресатов, вследствие быстрого всасывания и связывания лигандов структурами самой ткани. Не исключено, однако, что в органах и тканях существуют специальные специфические механизмы регуляции связывания и освобождения лигандов, взаимодействующих с альбумином.

       Одним из механизмов регуляции скорости, прочности и емкости связывания отдельных классов транспортируемых альбумином лигандов может быть изменение в капиллярах и интерстиции отдельных тканей некоторых физико-химических характеристик, таких как рН, ионная сила, ионный состав, температура, то есть направленное отклонение от среднего отдельных компонентов гомеостаза крови и межклеточной жидкости. Предпосылки для такого механизма имеются как в свойствах самого белка-транспортера, так и в известных потенциальных возможностях гомеостатических сдвигов в различных органах и тканях организма. Для сывороточных альбуминов характерны изменения структурных и физико-химических свойств в области средних физиологических значений рН, температуры (структурная перестройка при 30° - 40°С). Известно и влияние этих переходов на связывание некоторых классов лигандов. Уже это может служить предпосылкой для рассматриваемого механизма регуляции транспорта.

Когда же уровень альбумина в крови бывает сниженным?

    Понижен уровень альбумина в организме в тех случаях, когда его меньше вырабатывается в организме, либо когда он выводится из него. В норме молекула альбумина живет от восемнадцати до двадцати суток. Альбумин в крови является еще и хранилищем протеинов в организме. Если Вы, например, проводите голодание на воде, то именно за счет альбуминов и будет пополняться потребность организма в белке. Поэтому во время голодовки количество альбумина уменьшается. То же самое происходит и во время беременности. У организма увеличивается потребность в белках для строительства нового организма. Также, уровень альбумина уменьшен во время кормления грудью. Курильщики, Вас эта проблема также касается. В крови курильщика уровень альбумина понижен. Ведь печени не до этого, ей и так тяжело приходится. Поэтому страдает выработка альбумина.

    Есть люди, генетически предрасположенные к пониженному уровню альбумина в крови. При множестве тяжелых внутренних болезней также страдает выработка альбумина. Это может быть и онкологическое заболевание, и болезни печени, и нарывы на теле.

    Уровень альбумина в крови можно узнать по специальному анализу крови. Такой анализ очень часто назначают при подозрении на заболевания внутренних органов. При тяжелых формах нехватки альбумина в крови используется лекарственный препарат альбумин, который вырабатывается из донорской крови.

Гипоальбумения

    Гипоальбуминемия, т.е. уменьшение альбуминовой фракции белка плазмы крови встречается в первую oчередь при алиментарной дистрофии, причем степени патологического процесса в известной мере соответствует и выраженная альбуминемия.

    Встречается гипоальбуминемия и при вторичных истощениях, развивающихся в результате тяжелых общих заболеваний организма. В частности, выраженное уменьшение содержания альбуминов в плазме крови наблюдается при раневом истощении.

    Гипоальбуминемия встречается весьма часто при заболеваниях печени и почек, в частности она может быть весьма выраженной при амилоидном и липоидном нефрозах, описана также при гриппе, крупозной пневмонии.

МЕТАЛЛОТИОНЕИН

    Металлотионеин - небольшой, обогащенный цистеином белок, способный связывать двухвалентные металлы. Роль металлотионеина состоит в регуляции концентрации в клетке таких микроэлементов, как цинк и медь , а также в связывании ядовитых тяжелых металлов , например, кадмия и ртути . Отравление клеток организма тяжелыми металлами сопровождается накоплением металлотионеина благодаря усилению транскрипции гена (в культурах клеток описаны случаи амплификации этого гена, определяющей их устойчивость к ядам). Геном млекопитаюших содержит несколько генов металлотионеина, различающихся особенностями регуляции.

Нарушение функции металлотионеина

    Эта гипотеза была выдвинута William Walsh, PhD, который возглавляет Pfeiffer Research Center в Иллинойсе. Он проделал биохимические тесты около 500 пациентам, страдающим аутизмом, и выяснил, что эти дети имеют ненормальное соотношение меди и цинка, слишком большое количество меди и слишком маленькое количество цинка. Затем он выяснил, что контроль организма за медью и цинком относится к семейству протеинов называемых металлотионеинами (MT).

 

Другие функции металлотионеина (MT) в организме:

детоксикация тяжелых металлов, антиоксидация,

повышение иммунитета,

гнойное воспаление желудочно-кишечного тракта (?),

Информация о работе Транспорт и накопление металлов в биологических системах. Трансферрин. Ферритин. Церулоплазмин и сывороточный альбумин. Металлотионеины