Разработка устройства защиты телефонной линии от прослушивания

Автор работы: Пользователь скрыл имя, 11 Февраля 2012 в 13:05, дипломная работа

Краткое описание

Естественно, вначале этот опыт носил в основном военный характер, но затем он нашел благодатную почву для “мирной” реализации на ниве промышленного шпионажа. Одним из основных способов ведения разведывательных действий является получение доступа к каналам передачи информации, которыми пользуется конкурирующая сторона. В первую очередь, как правило, нападению подвергаются каналы телефонной связи, по которым, кроме речевой информации, передаются факсимильные, модемные сообщения.

Содержание работы

Введение 3
1. Теоретические основы защиты информации в
проводных системах связи (системах связи). Аналитический 6
обзор состояния дел.
2. Разработка, обоснование и расчет структурной 19
схемы устройства
2.1. Разработка требований к проектируемому 19
устройству
2.2. Анализ возможных вариантов построения устройства 39
2.3 Выбор, расчет и технико-экономическое обоснование 41
структурной схемы устройства
3. Разработка, расчет высокочастотного фильтра устройства 43
4. Экспериментальные результаты моделирования расчетного 53
элемента устройства
Заключение 54
Список использованных источников

Содержимое работы - 1 файл

бакалаврская работа 1.doc

— 1.16 Мб (Скачать файл)

     Канальный вокодер представляет собой совокупность двух основных частей - анализирующей (передающая сторона) и синтезирующей(приемная), которые содержат идентичные наборы(гребенки) полосовых фильтров, перекрывающих определенный частотный интервал. Структура канального вокодера представлена на рисунке:

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Рис. 2.3  - Структурная схема канального вокодера

     Рис. 2.4 - АЧХ гребенки фильтров  

     Фильтры блока анализа обеспечивают тональное  разделение спектра сигнала. Для перекрытия всей полосы звуковых частот, наряду с полосовыми, в гребенке используют фильтры НЧ и ВЧ (в самых низкочастотном и высокочастотном каналах). Типовая амплитудно-частотная характеристика гребенки фильтров, в случае равномерного разделения каналов может иметь следующий вид:

     Детектор  и фильтр НЧ в каждом канале выделяют огибающую сигнала данного канала, и каждая из них характеризует энергию речевого спектра в соответствующей полосе частот для фрагмента речи (длина фрагмента 5-30 мс). Для более компактной передачи выходы каждого из каналов могут логарифмироваться и кодироваться с помощью дельта импульсной кодовой модуляции (ДИКМ).

     От  числа частотных полос зависит  разборчивость синтезированной  речи. Хорошие результаты получаются при числе каналов 15-16 (полоса 100 Гц... 4 кГц). Для улучшения качества восстановленной речи при выборе центральных частот и ширины полос пропускания канальных фильтров целесообразно использовать критические полосы слуха.

     При выборе типа фильтров необходимо иметь в виду, что спектральные составляющие сигнала вблизи центральной частоты резонансных фильтров подвергаются существенным фазовым сдвигам, а это приводит к изменению тембра, даже если амплитудные соотношения сохранены. Причем при увеличении порядка фильтров фазовый сдвиг увеличивается, являясь причиной характерной для вокодера неестественности речи. С другой стороны, при недостаточной крутизне спада АЧХ фильтров появляется “смазанность” синтезированной речи. Практика показывает, что оптимальный результат соответствует АЧХ фильтров при крутизне их спада примерно 36 дБ на октаву.

     Частоту среза канального фильтра НЧ выбирают в десять раз меньшей центральной частоты полосового фильтра канала, однако возможно использование одинаковых фильтров низких частот с частотой среза около 25 Гц, что несколько снижает качество восстановленного речевого сигнала.

     Кроме оценки энергии сигнала в частотных  полосах, в блоке анализа также производится оценка характера речевого фрагмента. В детекторе тон/шум(Т-Ш) оценивается: вокализованным или фрикативным является данный фрагмент речевого сигнала. Такой детектор может быть реализован через определение числа переходов через ноль речевого сигнала (для вокализованных фрагментов в отличие от фрикативных число переходов через ноль невелико) или оценкой энергии сигнала в полосах до 800 Гц и более 2КГц (структурная схема такого детектора представлена на рисунке). 

       

     Рис. 2.5 – структура детектора тон-шум  

     Также в блоке анализа происходит определение частоты основного тона для вокализованных фрагментов речи. Для этого в структуру блока анализа вводится выделитель основного тона (ВОТ). Известно, что значение ОТ для разных голосов может изменяться почти в 10 раз - от 2 до 18 мс. Это обстоятельство создает немало трудностей при оценке ОТ, так как слух очень чувствителен к его искажениям. На сегодняшний день известно большое количество алгоритмов оценки ОТ, оперирующих как непосредственно с временным представлением речевого сигнала, так и со спектром речи. Например, метод Голда-Рабинера, автокорреляционный метод, SIFT(simplified inverse filter tracking) алгоритм.

     Таким образом, для каждого фрагмента  речевого сигнала на приемную сторону  передается признак тон-шум(1 бит), частота  основного тона, в случае вокализованного фрагмента(5-6 бит), значения энергии сигнала по каналам (при использовании ДИКМ менее 5 бит на канал).

     На  приемной стороне, в случае если принят вокализованный фрагмент, в качестве источника возбуждения гребенки фильтров выступает генератор периодических сигналов(ГТ). В качестве сигнала возбуждения может быть выбрана последовательность специального вида импульсов с периодом равным частоте основного тона данного фрагмента (также принимаемой из канала связи). В случае невокализованого фрагмента, в качестве сигнала возбуждения используется белый шум (ГШ), который может быть получен с помощью генератора случайный чисел.

     Сигнал  возбуждения умножается на значения энергии для каждого из каналов, после чего поступает на фильтр соответствующего канала (гребенка фильтров блока синтеза полностью аналогична гребенке блока анализа).

     Для получения выходного синтезированного речевого сигнала выходы всех каналов  блока синтеза суммируются.

     Закрытие  канала с помощью  зашумления линии

     Телефонный  аппарат имеет несколько элементов, имеющих способность преобразовывать акустические колебания в электрические, то есть обладающих "микрофонным эффектом". К ним относятся: звонковая цепь, телефонный и, конечно, микрофонный капсюли. За счет электроакустических преобразований в этих элементах возникают информационные (опасные) сигналы.

     При положенной трубке телефонный и микрофонный  капсюли гальванически отключены от телефонной линии и при подключении к ней специальных высокочувствительных низкочастотных усилителей возможен перехват опасных сигналов, возникающих в элементах только звонковой цепи. Амплитуда этих опасных сигналов, как правило, не превышает долей мВ.

     При использовании для съема информации метода "высокочастотного навязывания", несмотря на гальваническое отключение микрофона от телефонной линии, сигнал навязывания благодаря высокой частоте проходит в микрофонную цепь и модулируется по амплитуде информационным сигналом.

     Следовательно, в телефонном аппарате необходимо защищать как звонковую цепь, так и цепь микрофона.

     Для защиты телефонного аппарата от утечки акустической (речевой) информации по электроакустическому каналу используются как пассивные, так и активные методы и средства.

     К наиболее широко применяемым пассивным  методам защиты относятся:

  • ограничение опасных сигналов;
  • фильтрация опасных сигналов;
  • отключение источников (преобразователей) опасных сигналов.

     Возможность ограничения опасных сигналов основывается на нелинейных свойствах полупроводниковых элементов, главным образом диодов. В схеме ограничителя малых амплитуд используются два встречновключенных диода, имеющих вольтамперную характеристику (зависимость значения протекающего по диоду электрического тока от приложенного к нему напряжения), показанную на рис.. Такие диоды имеют большое сопротивление (сотни кОм) для токов малой амплитуды и единицы Ом и менее - для токов большой амплитуды (полезных сигналов), что исключает прохождение опасных сигналов малой амплитуды в телефонную линию и практически не оказывает влияние на прохождение через диоды полезных сигналов.

     
     Рис. 2.6 - Вольтамперная характеристика диода VD (а) и схемы защиты звонковой цепи (б) и микрофона (в) телефонного аппарата      

     Диодные ограничители включаются последовательно в линию звонка (см. рис. 2.6 б) или непосредственно в каждую из телефонных линий (см. рис. 2.6 в).

     Фильтрация  опасных сигналов используется главным образом для защиты телефонных аппаратов от "высокочастотного навязывания".

     Простейшим  фильтром является конденсатор, устанавливаемый  в звонковую цепь телефонных аппаратов с электромеханическим звонком и в микрофонную цепь всех аппаратов (см. рис. 2.6, б и в). Емкость конденсаторов выбирается такой величины, чтобы зашунтировать зондирующие сигналы высокочастотного навязывания и не оказывать существенного влияния на полезные сигналы. Обычно для установки в звонковую цепь используются конденсаторы, емкостью 1 мкФ, а для установки в микрофонную цепь - 0,01 мкФ. Более сложное фильтрующее устройство представляет собой многозвенный фильтр низкой частоты на LC-элементах.

     Для защиты телефонных аппаратов, как правило, используются устройства, сочетающие фильтр и ограничитель. К ним относятся: устройства типа "Экран", "Гранит-8", "Корунд", "Грань-300" и др. (см. рис. 2.7).

     
     Рис. 2.7 - схема устройства защиты телефонных аппаратов типа "Гранит", сочетающего фильтр и ограничитель      

     Отключение  телефонных аппаратов  от линии при ведении в помещении конфиденциальных разговоров является наиболее эффективным методом защиты информации.

     Самый простой способ реализации этого  метода защиты заключается в установке в корпусе телефонного аппарата или телефонной линии специального выключателя, включаемого и выключаемого вручную. Более удобным в эксплуатации является установка в телефонной линии специального устройства защиты, автоматически (без участия оператора) отключающего телефонный аппарат от линии при положенной телефонной трубке.

     К типовым устройствам, реализующим  данный метод защиты, относится изделие "Барьер- М1". В эго состав входят:

  • электронный коммутатор;
  • схема анализа состояния телефонного аппарата, наличия вызывных сигналов и управления коммутатором;
  • схема защиты телефонного аппарата от воздействия высоковольтных импульсов.

     Устройство  имеет следующие режимы работы: дежурный режим, режим передачи сигналов вызова и рабочий режим.

     В дежурном режиме (при положенной телефонной трубке) телефонный аппарат отключен от линии, и устройство находится в режиме анализа поднятия телефонной трубки и наличия сигналов вызова. При этом сопротивление развязки между телефонным аппаратом и линией АТС составляет не менее 20 МОм. Напряжение на выходе устройства в дежурном приеме составляет 5 ... 7 В.

     При получении сигналов вызова устройство переходит в режим передачи сигналов вызова, при котором через электронный коммутатор телефонный аппарат подключается к линии. Подключение осуществляется только на время действия сигналов вызова.

     При поднятии телефонной трубки устройство переходит в рабочий режим и телефонный аппарат подключается к линии. Переход устройства из дежурного в рабочий режим осуществляется при токе в телефонной линии не менее 5 мА.

     Изделие устанавливается в разрыв телефонной линии, как правило, при выходе ее из выделенного (защищаемого) помещения  или в распределительном щитке (кроссе), находящемся в пределах контролируемой зоны.

     Электропитание  устройства осуществляется от телефонной линии при токе потребления в дежурном режиме не более 0,3 мА.

     Устройство "Барьер - М1" обеспечивает защиту телефонного аппарата не только от утечки информации по электроакустическому каналу, но также и его защиту от воздействия высоковольтных импульсов (напряжением до 1000 В и длительностью до 100 мкс).

     Активные  методы защиты от утечки информации по электроакустическому каналу предусматривают линейное зашумление телефонных линий. Шумовой сигнал подается в линию в режиме, когда телефонный аппарат не используется (трубка положена). При снятии трубки телефонного аппарата подача в линию шумового сигнала прекращается.

     К сертифицированным средствам линейного  зашумления относятся устройства МП-1А (защита аналоговых телефонных аппаратов) и МП-1Ц П-1А (защита цифровых телефонных аппаратов) и др.

     Для защиты акустической (речевой) информации в выделенных помещениях наряду с защитой телефонных аппаратов необходимо принимать меры и для защиты непосредственно телефонных линий, так как они могут использоваться в качестве источников питания акустических закладок, установленных в помещениях, а также для передачи информации, получаемой этими закладками.

     При этом используются как пассивные, так  и активные методы и средства защиты. Пассивные методы защиты основаны на блокировании акустических закладок, питающихся от телефонной линии в режиме положенной трубки, а активные - на линейном зашумлении линий и уничтожении (электрическом "выжигании") закладных устройств или их блоков питания путем подачи в линию высоковольтных импульсов.

Информация о работе Разработка устройства защиты телефонной линии от прослушивания