Долговечность и эксплуатационная надежность строительных материалов, конструкций, зданий и сооружений

Автор работы: Пользователь скрыл имя, 17 Марта 2012 в 18:35, курсовая работа

Краткое описание

Каменные конструкции – древнейший вид сооружений. Тысячелетиями создавался опыт строительства из камня. До настоящего времени существуют сооружения, построенные в Средневековье, древнем Риме и Египте. В те далекие времена технология строительства базировалась на предыдущем опыте, не было научно обоснованных расчетов.
Отсутствие до XX века мощного прессового оборудования, необходимого для экспериментов, тормозило создание научно обоснованных методов расчета.

Содержание работы

1. Введение…………………………………………………………………………………………………………………………….1
2. Кладочные растворы……………………………………………………………………………………………………..2
3. Материалы для каменной кладки и их свойства………..…………………………..…………….6
4.Экспертиза каменных конструкций
4.1. Долговечность и энергоэффективность наружных стен………………………….8
4.2. Причины образования трещин…………………………………………..………………………………14
4.3. Осадка зданий……………………………………………………………………………………………………….21
4.4. Температурные деформации влажной кирпичной кладки………………………….28
4.5. Прочность кладки зависит от расчета………………………………………………………..34
4.6. Каменная кладка с позиции Европейской строительной науки – - Еврокад 6…………………………………………………………………………………………………………………………….36
4.7. Методика оценки качества возведения кирпичных зданий……………………….39
4.8. Использование ЭВМ в проектировании армокаменных конструкций …….45
5.Методы мониторинга каменных зданий…………………………………………………………………..52
6.Инновационные методы ремонта и усиления каменных конструкций………….…57
6.1. Инъецирование как метод усиления каменных конструкций…………………..58
6.2. Спиралевидные жесткие связи…………………………………………………………………………64
6.3. Морозостойкие кладочные растворы пониженной плотности с добавками микрокремнезема и омыленного таллового пека…………………………………..67
7. Результаты и их обсуждения…………………………………………………….……………………………73
8. Список литературы……………………………………………………………………………………………………..76

Содержимое работы - 1 файл

Моя.docx

— 2.00 Мб (Скачать файл)

В сложившихся условиях применение лицевого керамического кирпича для облицовки наружных трехслойных стен с повышенным уровнем теплоизоляции может представлять опасность для людей, находящихся около здания. Вероятность их разрушения и падения во много раз выше аварийных случаев, происходящих с облицовочными панелями или блоками. Поэтому применение лицевого кирпича для облицовки наружных стен, выполняемой непосредственно на стройке, целесообразно ограничить малоэтажным строительством. Для многоэтажных зданий его следует использовать в целом виде, продольных половинках, или плитках в виброкирпичных панелях, изготавливаемых на заводе. Опыт их применения хорошо известен в России и зарубежных странах.

 

 

В стенах зданий, построенных в 2000-2005 гг. из крупноформатных керамических камней с облицовочным слоем из пустотелого кирпича, соединенного тычковыми рядами или гибкими связями, не обнаружено разрушений лицевых кирпичей. Этому способствовало созданная кладочным раствором сплошная стена с повышенной характеристикой тепловой инерции (Д = 10,3), почти в 2 раза превышающей аналогичный физический параметр для трехслойной стены с мягким утеплителем при одинаковом термическом сопротивлении, равном 3,0 м2 °С/Вт. Созданное повышение характеристики тепловой инерции сплошных кирпичных стен позволило сократить количество переходов наружной температуры через 0 °С в зимне-весенний и осенне-зимний интервалы года, и тем самым повысить безремонтный срок эксплуатации облицовочного кирпичного слоя. Отсутствие системного подхода в решении важнейшей для народного хозяйства страны проблемы энергосбережения проявилось в неподготовленности проектных организаций к разработке долговечных наружных ограждающих конструкций с повышенным уровнем теплоизоляции. Это привело к существенным затратам на их восстановление, превышающих предполагаемую экономию от сокращения расходов на отопление зданий.

Наружные ограждения с повышенным уровнем теплоизоляции по температурному, влажностному и воздушным режимам существенно отличаются от ранее применяемых сплошных конструкций стен. Это оказало влияние на снижение долговечности облицовочного слоя. Необходимо было с введением новых норм по теплозащитным свойствам стен скорректировать и требования к морозостойкости, прочности другим физическим параметрам лицевого керамического кирпича в СНиП П-22-81* [2]. Такой подход обусловлен основным принципом, заложенным в [3] при прогнозировании долговечности наружных стен. Отсутствие комплексного подхода к решению проблемы долговечности наружных трехслойных стен с повышенным уровнем теплоизоляции, облицованных лицевым керамическим кирпичом, станет причиной второго этапа их разрушения через 15–20 лет. Это, в первую очередь, коснется облицовочных слоев, выполненных из кирпича с морозостойкостью ниже F50 и повышенным водопоглощением.

Основным фактором, влияющим на разрушение лицевого керамического кирпича в облицовочном слое наружных стен в условиях эксплуатации, являются переменные температурно-влажностные воздействия наружной среды в осенне-зимний и зимне-весенний интервалы года. Количество переходов наружной температуры через 0 °С в облицовочном слое в эти периоды года зависит от климата региона строительства. Эта специфика не учитывается при назначении марки по морозостойкости лицевого кирпича, применяемого для облицовочного слоя наружных стен. Не учитывается также уровень теплоизоляции наружных стен. В нормативном документе [2] нормируемое значение марки по морозостойкости для лицевого кирпича сплошных кирпичных стен при нормальном влажностном режиме помещений зданий составляет F25, а для многослойной кладки нормативное значение марки по морозостойкости лицевого керамического кирпича составляет F35. Эти требования распространяются на все конструкции стен без учета их уровня теплоизоляции и климатических условий региона строительства. Они обеспечивали требуемый срок службы стен до капитального ремонта с уровнем теплоизоляции, действовавшим до 1995 г.

 

 

 

Выполненные исследования в климатической камере и натурных условиях, а также расчеты температурных полей наружных стен с уровнем теплоизоляции (R0) от 1,2 до 4,2 м2 °С/Вт показали, что увеличение сопротивления теплопередаче наружных стен приводит к более глубокому промерзанию облицовочного слоя. При расчетных параметрах воздуха tв = 20 °С; tн = –25 С температура на границе

облицовочного слоя с утеплителем при R0 = 1,2 м2 °С/Вт составляет –15,6 °С, при R0 = 2,2 м2 ° С/Вт –19,9 °С, а при R0 = 3,2 м2 ° С/Вт –21,5 °С. На зимне-весеннем интервале года в г. Москве при средней температуре наружного воздуха минус 4,7 °С (март), максимальной температуре оттепели до +2,3 °С с полупериодом 7,6 суток и заморозке до минус 9,1 °С с полупериодом 5,4 суток повышение R0 стены с 1,2 до 3,2 м2 ° С/Вт снижает температуру облицовочного слоя на границе с утеплителем с +1,6 °С до минус 6,2 °С. При этом увеличивается средняя температура промерзания облицовочного кирпичного слоя толщиной 120 мм с минус 3,3 °С до минус 7,5 °С. Общее количество циклов в осенне-зимний и зимне-весенний интервалы года с полупериодами, приводящими к полному промерзанию и оттаиванию лицевого кирпича в облицовочном слое толщиной 120 мм, например, для г. Москвы составляет шесть. Для регионов с более континентальным климатом количество циклов существенно увеличивается. Для г. Новосибирска составляет десять, а для г. Сургута одиннадцать. При этих циклах облицовочный слой промерзает в стенах с R0 = 1,2 м2 °С/Вт до минус 2,7 °С, при R0 = 2,2 м2 ° С/Вт до минус 6,8 °С и R0 = 3,2 м2 ° С/Вт до минус 7,5 °С. Т.е. чем выше значение уровня теплоизоляции стены, тем больше образуется льда в порах лицевого кирпича и тем быстрее он разрушается. В трехслойных наружных стенах с R0 ≥ 3,2 м2 °С/Вт отрицательная температура облицовочного слоя зафиксирована и при трех- двухсуточных полупериодах похолодания и потепления. Количество циклов воздействия наружных температур на лицевой кирпич облицовочного слоя в условиях эксплуатации с переходом через 0°С, вызывающих их разрушение значительно больше нормативного равного F25 для сплошных кирпичных стен и F35 для трехслойных. Таким образом, количество промерзаний, приводящих к разрушению лицевого керамического кирпича в облицовочном слое стены, зависит от уровня теплоизоляции стены и количества циклов перехода наружной температуры через 0°С [4]. Руководствуясь таким подходом и установленными нормами по межкапитальным ремонтным срокам сплошных кирпичных стен, равным 50 лет [5], количество циклов замерзаний и оттаивания для г. Москвы составляет 300, для Новосибирска 500, для Сургута 550. Вместе с тем, для всех указанных регионов страны с существенно отличающейся континентальностью климата морозостойкость кирпича нормируется независимо от уровня теплоизоляции стен.

Долговечность одних и тех же лицевых пустотелых керамических материалов при одинаковой марке по морозостойкости в условиях эксплуатации наружных сплошных кирпичных стенах может существенно отличаться. На различие в сроке службы оказывает влияние расположение пустот в кирпичах и камнях, а также расположение облицовочных материалов в кладке стены. Нерациональное расположение пустот создает в облицовочном слое стены участки с пониженными теплозащитными свойствами и повышенной паропроницаемостью. Последняя способствует концентрации влаги на внутренней поверхности наружных керамических стенок, что приводит к их переувлажнению и преждевременному разрушению. Более явно это проявляется при применении семи- и девятищелевых

 

керамических кирпичей и камней, теплопроводность которых в тычковом направлении составляет 0,35–0,40 Вт/(м °С), а ложковом — 0,6 Вт/(м °С). Сопротивление паро-проницанию соответственно составляет 0,757–0,846 и 0,476 м2 ч Па/мг. На 25–30 году разрушению подвергаются кирпичи и камни только ложковых рядов облицовочного слоя. В кирпичах и камнях тычковых рядов стен несмотря на длительный срок эксплуатации, составляющий более 50 лет, разрушения наружных тычковых рядов не обнаружено при той же марке по морозостойкости равной F25. Отмеченные теплофизические различия особо важны для лицевого пустотелого кирпича стен сплошной кладки и трехслойных стен, который практически весь отопительный сезон находится в зоне воздействия отрицательных температур наружного воздуха. Поэтому предлагается для повышения долговечности и теплозащитных свойств облицовочного слоя, связанного с основной частью сплошной кирпичной стены тычковыми рядами с R0 = 1,5–2,5, использовать лицевой кирпич с рациональным расположением пустот с морозостойкостью не ниже F35. Для облицовочного слоя, соединяемого с основной частью сплошной кирпичной стены с помощью гибких металлических связей с R0 = 1,5–2,5, предлагается применять лицевой кирпич с горизонтально расположенными пустотами с маркой по морозостойкости не ниже F35. Причем ширину пустот необходимо принимать равной 10 мм. При такой ширине значительно увеличивается количество пустот в кирпиче, повышается термическое сопротивление облицовочного слоя и практически исключается их заполнение кладочным раствором [4].

В трехслойных наружных стенах с минераловатными плитами диффундирующий из помещения пар, встречая на пути низкое значение сопротивления паропроницаемости утеплителя, перемещается к облицовочному слою с более высокой температурой и в большем количестве по сравнению с другими плотными теплоизоляционными материалами. Пар конденсируется на внутренней поверхности лицевых кирпичей облицовочного слоя в виде инея. При потеплении иней переходит в жидкую влагу, которая впитывается в кирпичи, а затем при заморозках переходит в твердое состояние, т.е. лед, который разрушает лицевой кирпич с внутренней стороны. Поэтому при применении минераловатных плит следует в трехслойных стенах в качестве облицовочного материала применять полнотелый или пустотелый кирпич с размерами пустот, исключающими их заполнение раствором с повышенной маркой по морозостойкости, равной F50–F75.

Температурный режим облицовочного слоя наружных стен с вентилируемым фасадом в связи с его независимым температуровлаговоздушным режимом от утепленной части стены практически подвержен даже суточным периодическим похолоданиям и оттепелям. Поэтому он в осенне-зимний и зимне-весенний периодах года подвергается значительно большим циклам замораживания и оттаивания по сравнению с облицовочными слоями выше рассмотренных конструкций стен. Особые эксплуатационные условия в облицовочном слое наружных стен с вентилируемой воздушной прослойкой создаются в результате двухстороннего контакта с наружным воздухом, что приводит к повышенному влагосодержанию кладочного раствора и кирпича в пасмурную погоду и при дожде. Ускорению процесса сверхсорбционного увлажнения лицевого керамического кирпича в облицовочном слое способствует более влажный цементно-песчаный кладочный раствор, расположенный в швах кладки и пустотах кирпичей. В результате контакта с раствором, особенно при его

 

сверхсорбционном увлажнении, влажность лицевого кирпича может достигать значения, близкого к максимальному водопоглощению. Лицевой кирпич разрушается при заморозках и оттепелях с обеих сторон. Поэтому предлагается облицовочный слой при наличии воздушной прослойки выполнять из полнотелого кирпича с маркой по морозостойкости F100 независимо от уровня теплоизоляции стены.

В последние годы модернизированы многие кирпичные заводы, усовершенствованы технологии, что позволило организовать выпуск лицевого кирпича повышенной морозостойкости. Это учтено в ГОСТ 530-2007 [6], в котором требования к кирпичам по морозостойкости, особенно к лицевым, повышены и подразделяются на марки F25, F35, F50, F75, F100. Переход на применение кирпича повышенной морозостойкости позволит увеличить долговечность облицовочного слоя современных конструкций наружных сплошных кирпичных и трехслойных стен с повышенным уровнем теплоизоляции.

В действующем нормативном документе [5] установлена продолжительность эксплуатации до капитального ремонта для сплошных кирпичных стен 40–50 лет, для стен из облегченной кладки с теплоизоляционным слоем — 30 лет. Как правило, нормативный срок до капитального ремонта подтверждается в условиях эксплуатации при применении в качестве лицевого кирпича пустотелых керамических изделий с маркой по морозостойкости F25 и F35, для стен с приведенным сопротивлением теплопередаче R0 = 1,0 м2 °С/Вт. Поэтому эти марки по морозостойкости приняты в качестве базовых значений.

На основании результатов натурных исследований долговечности облицовочных слоев наружных стен зданий, эксплуатируемых 40–55 лет, а также обработки метеоданных, разработана программа для прогнозирования морозостойкости и других физических и механических параметров лицевого керамического кирпича в конструкциях наружных стен с уровнем теплоизоляции, обеспечивающим требуемую продолжительность эксплуатации до первого капитального ремонта и срок службы в целом.

Зафиксированные разрушения лицевого керамического кирпича в облицовочном слое трехслойных стен из эффективной кладки некоторых зданий являются следствием конструктивных недоработок в проектах зданий, недобросовестности рабочих, не поставивших в некоторых местах гибкие связи для соединения облицовочного слоя с конструкционной частью стены, а также недостаточного утепления зон сопряжения железобетонных перекрытий с лицевым кирпичом.

В заключении следует отметить, что облицовочные слои из лицевого керамического кирпича наружных сплошных стен, выполненных с соблюдением технологического регламента и технических условий, представляют более надежные и долговечные в эксплуатации конструктивные решения в сравнении с трехслойными. Особо следует отметить прочное и более надежное соединение облицовочного слоя с помощью тычковых лицевых кирпичей с основной конструкцией сплошной кирпичной стены, выполненной из крупноформатных теплоэффективных керамических камней.

 

 

 

 

 

 

4.2. Причины образования трещин.

Причины характерных дефектов и повреждений  конструкций жилых зданий.

В возведенных  за последние годы монолитных и кирпичных  зданиях повышенной этажности выявлено значительное количество повреждений  несущих конструкций. В строящихся жилых домах дефекты критического и предаварийного уровня практически  не снижаются.

 Проведенный научно-экспертно-обследовательским и проектно-производственным предприятием "Стройнаука" анализ причин систематических повреждений, выявленных за последние 5 лет на строящихся и эксплуатируемых объектах, показывает, что дефекты имеют системный характер и около 40-50% их обусловлено недоработками конструктивных решений, традиционно "тиражируемых" в проектной документации.

 В частности,  по причине проектных ошибок  в начале 1998 г. возникла предаварийная  ситуация на находящемся в  стадии строительства 13-этажном  кирпичном жилом доме в г.  Минске.

 Почти в  каждом из обследованных НЭОППП "Стройнаука" зданий выявлены  трещины в стеновых конструкциях, в том числе в сжатых элементах,  в которых нормами образование  трещин не допускается. Установлено,  что в большинстве случаев  раскрытие трещин имеет циклический  характер и связано с годовыми  сезонными изменениями температуры.  В домах с небольшими размерами  в плане указанные дефекты  образуются преимущественно на  верхних этажах. В протяженных  стеновых конструкциях (порядка  60 м и более) трещины можно  наблюдать преимущественно в  цокольной части зданий и по  торцам длиномерных железобетонных  конструкций. Предложенные ранее  рекомендации для "лечения"  жилых домов оказались неэффективными: стягивание остовов зданий стальными  тяжами в ряде случаев не  обосновывалось расчетами и не  достигало цели, рекомендации зачеканивать  трещины цементным раствором  не учитывали механизм их образования  и сезонность раскрытия, а утепление  помещений изнутри резко ухудшало  ситуацию.

Информация о работе Долговечность и эксплуатационная надежность строительных материалов, конструкций, зданий и сооружений