История криптографии

Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 11:15, реферат

Краткое описание

История криптографии насчитывает около 4 тысяч лет. В качестве основного критерия периодизации криптографии возможно использовать технологические характеристики используемых методов шифрования.
Первый период (приблизительно с 3-го тысячелетия до н. э.) характеризуется господством моноалфавитных шифров (основной принцип - замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами). Второй период (хронологические рамки - с IX века на Ближнем Востоке (Ал-Кинди) и сXV века в Европе (Леон Баттиста Альберти) - до начала XX века) ознаменовался введением в обиход полиалфавитных шифров. Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических устройств в работу шифровальщиков. При этом продолжалось использование полиалфавитных шифров.

Содержимое работы - 1 файл

История криптографии.docx

— 130.35 Кб (Скачать файл)

СССР

В армии и флоте СССР использовались шифры с кодами различной длины - от двух символов (фронт) до пяти (стратегические сообщения). Коды менялись часто, хотя иногда и повторялись на другом участке фронта. По ленд-лизу СССР получил несколько M-209, которые использовались как основа для создания своих собственных шифровальных машин, хотя об их использовании неизвестно.

Также для связи высших органов  управления страной (в том числе Ставки Верховного Главнокомандования) и фронтами использовалась ВЧ-связь. Она представляла собой технические средства для предотвращения прослушивания телефонных разговоров, которые модулировали высокочастотный сигнал звуковым сигналом от мембраны микрофона. Уже во время Второй мировой войны механизм заменили на более сложный, который разбивал сигнал на отрезки по 100-150 мс и три-четыре частотных полосы, после чего специальный шифратор их перемешивал. На приёмном конце аналогичное устройство производило обратные манипуляции для восстановления речевого сигнала. Криптографической защиты не было, поэтому используя спектрометр можно было выделить используемые частоты и границы временных отрезков, после чего медленно, по слогам, восстанавливать сигнал.

Во время советско-финской войны (1939-1940) Швеция успешно дешифровывала сообщения СССР и помогала Финляндии. Так, например, во время битвы при Суомуссалми успешный перехват сообщений о продвижении советской 44-й стрелковой дивизии помог Карлу Маннергейму вовремя выслать подкрепления, что стало залогом победы. Успешное дешифрование приказов о бомбовых ударах по Хельсинки позволяло часто включить систему оповещения о воздушном ударе ещё до того, как самолёты стартуют с территории Латвии и Эстонии.

30 декабря 1937 года был образовано 7-е отделение (в дальнейшем - 11-й отдел) Управления разведки Наркомата ВМФ, задачей которого являлось руководство и организация дешифровальной работы. В годы войны на дешифровально-разведочной службе СССР состояло не более 150 человек, однако всё равно, по мнениюВадима Тимофеевича Кулинченко - капитана 1 ранга в отставке, ветерана-подводника, ДРС показала «удивительную результативность и эффективность». В 1941-1943 годах ДРС Балтийского флота было взломано 256 германских и финляндских шифров, прочитано 87 362 сообщения. ДРС Северного флота (всего - 15 человек) взломала 15 кодов (в 575 вариантах) и прочитала более 55 тыс. сообщений от самолётов и авиабаз противника, что, по оценке Кулинченко, «позволило полностью контролировать всю закрытую переписку ВВС Германии». ДРС СФ также раскрыто 39 шифров и кодов используемых аварийно-спасательной, маячной и радионавигационной службами и береговой обороны противника и прочитано около 3 тыс. сообщений. Важные результаты были получены и по другим направлениям. ДРС Черноморского флота имело информацию и о текущей боевой обстановке, и даже перехватывало некоторые стратегические сообщения.

Успешные результаты по чтению зашифрованной  японской дипломатической переписки  позволили сделать вывод о  том, что Япония не намерена начинать военные действия против СССР. Это дало возможность перебросить большое количество сил на германский фронт.

В передачах радиосвязи с советскими ядерными шпионами в США (см. создание советской атомной бомбы) Центр в Москве использовал теоретически неуязвимую криптографическую систему с одноразовым ключом. Тем не менее, в ходе реализации глубоко засекреченного проекта «Венона» контрразведке США удавалось расшифровать передачи, в некоторые периоды около половины из них. Это происходило оттого, что в военные годы из-за недостатка ресурсов некоторые ключи использовались повторно, особенно в 1943-1944 годах. Кроме того, ключи не были по-настоящему случайными, так производились машинистками вручную.

США

Американская шифровальная машина M-209 (CSP-1500) являлась заменой M-94 (англ.) (CSP-885) для передачи тактических сообщений. Была разработана шведским изобретателем российского происхождения Борисом Хагелиным в конце 1930-х годов. Несколько экземпляров было приобретено для армии США, после чего дизайн был упрощён, а механические части - укреплены. Впервые машина была использована в Североафриканской кампании во время наступления в ноябре 1942 года. До начала 1960-х годов компанией Smith Corona (англ.) было изготовлено около 125 тысяч устройств.

Машина состояла из 6 колёс, комбинация выступов которых давала значение сдвига для буквы текста. Период криптографической последовательности составлял 101 405 850 букв. Хотя машина не могла использоваться для шифрования серьёзного трафика (не была криптографически стойкой), M-209 была популярна в армии из-за малого веса, размера и лёгкости в обучении.

Также США во время Второй мировой войны набирали связистов из индейского племени Навахо, язык которого за пределами США никто не знал. При этом была учтена проблема, возникшая ещё во время Первой мировой войны с использованием языка племени Чокто для похожих целей - в обоих языках просто не было достаточного количества военных терминов. Поэтому был составлен словарь из 274 военных терминов, а также 26 слов алфавитного кода. Последний был впоследствии расширен для предотвращения частотных атак. Как указывает Сингх, именно отсутствие знания языка племени Навахо стало причиной того, что данный код так и остался нерасшифрован японцами. Информация об использовании столь экзотического средства шифрования радиопереговоров была рассекречена лишь в 1968 году.

Крупным успехом американских криптоаналитиков явился проект «Венона» (англ. Venona project) по расшифровке переговоров советской разведки со своими агентами в ядерном «проекте Манхэттен». Первые сведения о проекте для публики появились ли в 1986 и окончательно в 1995 годах. Поэтому результаты перехвата не могли быть использованы на таких судебных процессах как дело Розенбергов. Некоторые шпионы так и остались безнаказанными.

Расшифровка стала возможной из-за несовершенств реализации протокола - повторное использование ключа и неполная случайность при создании ключа. Если бы ключ отвечал бы всем требованиям алгоритма, взлом кода был бы невозможен.

Математическая криптография


После Первой мировой войны правительства стран засекретили все работы в области криптографии. К началу 1930-х годов окончательно сформировались разделы математики, являющиеся основой для будущей науки - общая алгебра, теория чисел, теория вероятностей и математическая статистика. К концу 1940-х годов построены первые программируемые счётные машины, заложены основы теории алгоритмов, кибернетики. Тем не менее, в период после Первой мировой войны и до конца 1940-х годов в открытой печати было опубликовано совсем немного работ и монографий, но и те отражали далеко не самое актуальное состояние дел. Наибольший прогресс в криптографии достигается в военных ведомствах.

Ключевой вехой в развитии криптографии является фундаментальный труд Клода Шеннона «Теория связи в секретных системах» (англ. Communication Theory of Secrecy Systems) - секретный доклад, представленный автором в 1945 году, и опубликованный им в «Bell System Technical Journal» в 1949 году. В этой работе, по мнению многих современных криптографов, был впервые показан подход к криптографии в целом как к математической науке. Были сформулированы её теоретические основы и введены понятия, с объяснения которых сегодня начинается изучение криптографии студентами.

В 1960-х годах начали появляться различные блочные шифры, которые обладали большей криптостойкостью по сравнению с результатом работы роторных машин. Однако они предполагали обязательное использование цифровых электронных устройств - ручные или полумеханические способы шифрования уже не использовались.

В 1967 году выходит книга Дэвида Кана «Взломщики кодов». Хотя книга не содержала сколько-нибудь новых открытий, она подробно описывала имеющиеся на тот момент результаты в области криптографии, большой исторический материал, включая успешные случаи использования криптоанализа, а также некоторые сведения, которые правительство США полагало всё ещё секретными. Но главное - книга имела заметный коммерческий успех и познакомила с криптографией десятки тысяч людей. С этого момента начали понемногу появляться работы и в открытой печати.

Примерно в это же время Хорст Фейстель переходит из Военно-воздушных сил США на работу в лабораторию корпорации IBM. Там он занимается разработкой новых методов в криптографии и разрабатывает ячейку Фейстеля, являющуюся основой многих современных шифров, в том числе шифра Lucifer, ставшего прообразом шифра DES - стандарта шифрования США с 23 ноября 1976 года, первого в мире открытого государственного стандарта на шифрование данных, не составляющих государственной тайны. При этом по решению Агентства национальной безопасности США (АНБ) при принятии стандарта длина ключа была уменьшена со 112 до 56 бит. Несмотря на найденные уязвимости (связанные, впрочем, в первую очередь, именно с уменьшенной длиной ключа), он использовался, в том числе с изменениями, до2001 года. На основе ячейки Фейстеля были созданы и другие шифры, в том числе TEA (1994 год), Twofish (1998 год), IDEA (2000 год), а также ГОСТ 28147-89, являющийся стандартом шифрования в России как минимум с 1989 года.

В 1976 году публикуется работа Уитфилда Диффи и Мартина Хеллмана «Новые направления в криптографии» (англ. «New Directions in Cryptography»)[109]. Данная работа открыла новую область в криптографии, теперь известную как криптография с открытым ключом. Также в работе содержалось описание алгоритма Диффи - Хеллмана, позволявшего сторонам сгенерировать общий секретный ключ используя только открытый канал. Кроме этого одним из результатов публикации стал значительный рост числа людей, занимающихся криптографией.

Хотя работа Диффи-Хеллмана создала большой теоретический задел для открытой криптографии, первой реальной криптосистемой с открытым ключом считают алгоритм RSA (названный по имени авторов - Rivest, Shamir и Adleman). Опубликованная в августе 1977 года работа позволила сторонам обмениваться секретной информацией не имея заранее выбранного секретного ключа. Опасаясь распространения системы в негосударственных структурах, АНБ безуспешно требовало прекращения распространения системы. RSA используется во всём мире и, на 1996 год, являлся стандартом де-факто для шифрования с открытым ключом. Черновики стандарта ISO для цифровой подписи и банковского стандарта ANSI основаны на RSA, также он служит информационным дополнением для ISO 9796, принят в качестве стандарта во Французском банковском сообществе и в Австралии. В США, из-за давления АНБ, стандарты на шифрование с открытым ключом или цифровую подпись отсутствуют, хотя большинство компаний использует стандарт PKCS #1, основанный на RSA.

Стоит отметить, что и RSA, и алгоритм Диффи - Хеллмана были впервые открыты в английских спецслужбах в обратном порядке, но не были ни опубликованы, ни запатентованы из-за секретности.

В России для шифрования с открытым ключом стандарт отсутствует, однако для электронной цифровой подписи (органически связанной с шифрованием с открытым ключом) принят стандарт ГОСТ Р 34.10-2001, использующий криптографию на эллиптических кривых.

Открытая криптография и государство


Начиная с 1970-х годов интерес  к криптографии растёт со стороны отдельных исследователей, бизнеса и частных лиц. Этому способствовали в том числе и публикации в открытой печати - книга Дэвида Кана «Взломщики кодов», готовность научной (создание ячейки Фейстеля, работы Диффи и Хеллмана, шифров DES и RSA) и технической базы (вычислительной техники), а также наличие «заказа» со стороны бизнеса - требований к надёжной передаче информации в рамках отдельной страны и по всему миру. Одновременно с этим появилось и сопротивление со стороны государства развитию открытой криптографии (гражданской криптографии), что видно на примере истории противодействия с АНБ. Среди причин негативного отношения правительства указывают на недопустимость попадания надёжных систем шифрования в руки террористов, организованной преступности или вражеской разведки.

После возрастания общественного  интереса к криптографии в США в конце 1970-х и начале 1980-х годов АНБ предприняло ряд попыток подавить интерес общества к криптографии. Если с компанией IBM удалось договориться (в том числе по вопросу снижения криптостойкости шифра DES), то научное сообщество пришлось контролировать через систему грантов - Национальный научный фонд США. Представители фонда согласились направлять работы по криптографии на проверку в АНБ и отказывать в финансировании определённых научных направлений. Также АНБ контролировала и бюро патентов, что позволяло наложить гриф секретности в том числе на изобретения гражданских лиц. Так, в 1978 году гриф «секретно», в соответствии с законом Invention Secrecy Act о засекречивании изобретений, которые могли быть использованы для совершенствования техники военного назначения, получило изобретение «Phaserphone» группы под руководством Карла Николаи (англ. Carl R. Nicolai), позволяющее шифровать голос. После того как история получила значительную огласку в прессе, АНБ пришлось отказаться от попыток засекретить и монополизировать изобретение. Также в 1978 году гражданский сотрудник АНБ Джозеф Мейер (англ. Joseph Meyer) без согласования с начальством послал в IEEE, членом которого он также являлся, письмо с предупреждением[114], что публикация материалов по шифрованию и криптоанализу нарушает Правила по регулированию международного трафика вооружений (англ. International Traffic in Arms Regulations, ITAR). Хотя Мейер выступал как частное лицо, письмо было расценено как попытка АНБ прекратить гражданские исследования в области криптографии. Тем не менее, его точка зрения не нашла поддержки, но само обсуждение создало рекламу как открытой криптографии, так и симпозиуму по теории информации 1977 года - науки, тесно связанной с шифрованием и криптоанализом благодаря работам Шеннона.

После провалов, связанных с письмом  Мейера и дела группы Николаи, директор АНБ опубликовал несколько статей, в которых призвал академические  круги к совместному решению  проблем, связанных с открытым изучением  криптографии и национальной безопасностью. В результате образовалась некоторая  структура самоцензуры - предварительной проверки научных публикаций в особом государственном комитете. В то же время АНБ получает возможность распределять средства на криптографические исследования, «отделив» от Национального научного фонда свой собственный, в 2-3 миллиона долларов США. Тем не менее, после конфликта с Леонардо Адлеманом в 1980 году было решено, что заявку на финансирование криптографических исследований можно подавать как в национальный, так и в специализированный фонд АНБ.

Законодательно в США было сделано ограничение на использование открытой криптографии. Выдвигалось требование умышленно обеспечить ослабленную защиту от взлома, чтобы государственные службы при необходимости (в том числе - по решению суда) могли прочитать или прослушать зашифрованные сообщения. Однако из-за нескольких инцидентов взлома коммерческих систем от этого пришлось отказаться, так как запрет на использование сильной криптографии внутри страны стал наносить ущерб экономике. В результате к концу 1980-х годов в США остался единственный запрет - на экспорт «сильной» криптографии, в результате которого, а также из-за развития персональной вычислительной техники, к началу 1990-х годов вся экспортируемая из США криптография стала «полностью слабой».

Информация о работе История криптографии