Ветроэнергетика в РБ

Автор работы: Пользователь скрыл имя, 21 Февраля 2012 в 12:21, реферат

Краткое описание

Огромная энергия движущихся воздушных масс, и мысль об ее использовании давно уже привлекала людей. Да и использовать эту энергию научились за тысячу лет до нашей эры. Энергия ветра помогала преодолевать просторы океанов, ветряные мельницы служили единственным источником энергии для тех человеческих поселений, где не было рек или моря.

Содержимое работы - 1 файл

ВЕТРОЭНЕРГЕТИКА.doc

— 205.00 Кб (Скачать файл)

 

Таблица 1. Суммарные установленные мощности, МВт, по странам мира 2005—2007 г.

Примечание. Источник:[ 5]

 

 

 

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009 прогноз

2010 прогноз

7475

9663

13696

18039

24320

31164

39290

47686

59004

73904

93849

120791

140000

170000

Таблица 2. Суммарные установленные мощности, МВт, по прогнозу WWEA до 2010 г.

Примечание. Источник:[5]

 

Страны Евросоюза в 2005 году вырабатывают из энергии ветра около 3 % потребляемой электроэнергии.

В 2007 году ветряные электростанции Германии произвели 14,3 % от всей произведённой в Германии электроэнергии.

В 2007 году более 20 % электроэнергии в Дании вырабатывалось из энергии ветра.

Индия в 2005 году получает из энергии ветра около 3 % всей электроэнергии.

В 2007 году в США из энергии ветра было выработано 48 млрд кВт•ч электроэнергии, что составляет более 1 % электроэнергии, произведённой в США за 2007 год.

Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии. 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны.

 

 

ЭКОНОМИЧЕСКИЕ ПРОБЛЕМЫ

 

Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра — фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезе. Учитывая, что энергосистема сама имеет неоднородности энергонагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.

Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25 % от общей установленной мощности системы.

По данным испанских компаний «Gamesa Eolica» и «WinWind» точность прогнозов выдачи энергии ветростанций при почасовом планировании на рынке «на день вперед» или спотовом режиме превышает 95 %.

Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередач и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими.

Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 м является сложным и дорогостоящим мероприятием.

 

 

 

Основными факторами, приводящими к удорожанию энергии, получаемой от ветрогенераторов, являются:

- необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (требуется применение инвертора)

- необходимость автономной работы в течении некоторого времени (требуется применение аккумуляторов)

- необходимость длительной бесперебойной работы потребителей (требуется применение дизель-генератора)

В настоящее время наиболее экономически целесообразно получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

- отопление является основным энергопотребителем любого дома в стране;

- схема ветрогенератора и управляющей автоматики кардинально упрощается;

- схема автоматики может быть в самом простом случае построена на нескольких тепловых реле;

- в качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения;

- потребление тепла не так требовательно к качеству и бесперебойности: температуру воздуха в помещении можно поддерживать в широких диапазонах 19—25°С, а в бойлерах горячего водоснабжения 40—97°С без ущерба для потребителей.

 

ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ ВЕТРОЭНЕРГЕТИКИ

 

1) Выбросы в атмосферу.

Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота. По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО2 на 1,5 миллиарда тонн.

 

2) Шум.

Ветряные энергетические установки производят две разновидности шума:

•              механический шум (шум от работы механических и электрических компонентов)

•              аэродинамический шум (шум от взаимодействия ветрового потока с лопастями установки).

На таблице 3 показаны соотношения между источником и соответствующим уровнем шума.

 

 

Источник шума

Уровень шума, дБ

Болевой порог человеческого слуха

120

Шум турбин реактивного двигателя на удалении 250 м

105

Шум от отбойного молотка в 7 м

95

Шум от грузовика при скорости движения 48 км/ч на удалении в 100 м

65

Шумовой фон в офисе

60

Шум от легковой автомашины при скорости 64 км/ч

55

Шум от ветрогенератора в 350 м

35—45

Шумовой фон ночью в деревне

20—40

 

Таблица 3. соотношения между источником и соответствующим уровнем шума.

Примечание. Источник:[5]

 

 

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.

Примером подобных констуктивных просчетов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

 

 

3) Визуальное воздействие.

 

Визуальное воздействие ветрогенераторов — субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт•ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

 

4) Использование земли.

 

Турбины занимают только 1 % от всей территории ветряной фермы. На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью, что и происходит в таких густонаселённых странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000–$5000 в год.

В таблице 4 показана удельная потребность в площади земельного участка для производства 1 млн кВт•ч электроэнергии.

 

Источник энергии

Удельный показатель площади земельного участка,
требующейся для производства 1 млн кВт·ч за 30 лет (м²)

Геотермальный источник

404

Ветер

800—1335

Фотоэлектрический элемент

364

Солнечный нагревательный элемент

3561

Уголь

3642

 

 

 

Таблица 4. Удельная потребность в площади земельного участка для производства 1 млн кВт•ч электроэнергии.

 

Примечание. Источник: [5]

 

5) Вред, наносимый животным и птицам.

Популяции летучих мышей, живущие рядом с ВЭС на порядок более уязвимы, нежели популяции птиц. Возле концов лопастей ветрогенератора образуется область пониженного давления, и млекопитающее, попавшее в неё, получает баротравму. Более 90% летучих мышей, найденных рядом с ветряками обнаруживают признаки внутреннего кровоизлияния. По объяснениям ученых, птицы имеют иное строение лёгких, а потому более резистентны к резким перепадам давления и страдают только от непосредственного столкновения с лопастями ветряков.

 

Причины гибели птиц (из расчета на 10 000)

штук

Дома/ окна

5500

Кошки

1000

Другие причины

1000

ЛЭП

800

Механизмы

700

Пестициды

700

Телебашни

250

Ветряные турбины

Менее 1

Информация о работе Ветроэнергетика в РБ