Оценка радиационной обстановки на сельскохозяйственном объекте

Автор работы: Пользователь скрыл имя, 15 Января 2012 в 21:02, реферат

Краткое описание

В случае применения противником ядерного и химического оружия, а также при авариях на предприятиях атомной и химической промышленности радиоактивному заражению подвергнутся воздух, местность и расположенные на ней сооружения, техника, имущество. Ситуация, создавшаяся в результате радиоактивного заражения местности, называется соответственно радиационной.

Содержание работы

Введение………………………………………………………………………… 3
1. РЗМ………………………………………………………………………….. 4
2. Зоны РЗМ........................................................................................................ 4
3. Источники ионизированных излучений………………………………….. 5
4. Дозиметрические величины и единицы их измерений…………………...9
5. Закон спада уровня радиации………………………………………………13
6. Поражающее воздействие РВ на людей…………………………………. 14
7. Поражающее воздействие РВ на растения…………………………….. 18
8. Определение доз облучения………………………………………………. 23
9. Приборы дозиметрического контроля…………………………………… 31
10. Основные принципы защиты населения 35
11. Способы и средства защиты населения………………………………….. 36
12. Защитные сооружения…………………………………………………….. 37
13. СИЗ…………………………………………………………………………. 41
14. Средства медицинской защиты…………………………………………… 43
Расчетная часть………………………………………………………………… 48
План схемы здания…………………………………………………………….. 54
Дополнительные расчеты……………………………………………………. 55
Заключение………………………………………………………………….. 59
Список литературы……………………………………………………………. 60

Содержимое работы - 1 файл

Радиоактивное загрязнение местности-2.doc

— 361.50 Кб (Скачать файл)
align="justify">  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Вывод: Делаем вывод, что спад уровня радиации интенсивнее происходит        после взрыва. 

6. Поражающее воздействие  РВ на людей

      Радиоактивные излучения вызывают ионизацию атомов и молекул живых тканей, в результате чего происходит разрыв нормальных связей и изменение химической структуры, что влечет за собой либо гибель клеток, либо мутацию организма. Действие мощных доз ионизирующих излучений вызывает гибель живой природы.

      Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

      Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и зачастую для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм:

  • альфа-частицы наиболее опасны, однако для альфа-излучения даже лист бумаги является непреодолимой преградой;
  • бета-излучение способно проходить в ткани организма на глубину один-два сантиметра;
  • гамма-излучение характеризуется наибольшей проникающей способностью:  его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца. Также различается чувствительность отдельных органов к радиоактивному излучению.

          Поэтому, чтобы получить наиболее достоверную информацию о степени риска, необходимо учитывать соответствующие коэффициенты чувствительности тканей при расчете эквивалентной дозы облучения:

  • 0,03 – костная ткань
  • 0,03 – щитовидная железа
  • 0,12 – красный костный мозг
  • 0,12 – легкие
  • 0,15 – молочная железа
  • 0,25 – яичники или семенники
  • 0,30 – другие ткани
  • 1,00 – организм в целом.

      Вероятность повреждения тканей зависит от суммарной  дозы и от величины дозировки, так как благодаря репарационным способностям большинство органов имеют возможность восстановиться после серии мелких доз. Тем не менее, существуют дозы, при которых летальный исход практически неизбежен.

      Так, например, дозы порядка 100 Гр приводят к смерти через несколько дней или даже часов вследствие повреждения центральной нервной системы, от кровоизлияния в результате дозы облучения в 10-50 Гр смерть наступает через одну-две недели, а доза в 3-5 Гр грозит обернуться летальным исходом примерно половине облученных. Знания конкретной реакции организма на те или иные дозы необходимы для оценки последствий действия больших доз облучения при авариях ядерных установок и устройств или опасности облучения при длительном нахождении в районах повышенного радиационного излучения, как от естественных источников, так и в случае радиоактивного загрязнения.

      Следует более подробно рассмотреть наиболее распространенные и серьезные повреждения, вызванные облучением, а именно рак и генетические нарушения. В случае рака трудно оценить вероятность заболевания как  следствия облучения.  Любая, даже самая малая доза, может привести к необратимым последствиям, но это не предопределено.  Тем не менее, установлено, что вероятность заболевания  возрастает прямо пропорционально дозе облучения.

      Среди наиболее распространенных раковых  заболеваний, вызванных облучением, выделяются  лейкозы. Оценка вероятности  летального исхода при лейкозе более надежна, чем аналогичные оценки для других видов раковых заболеваний. Это можно объяснить тем, что лейкозы первыми проявляют себя, вызывая смерть в среднем через 10 лет после момента облучения. За лейкозами «по популярности» следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани.

      Воздействие  радиологического излучения резко  усиливается другими неблагоприятными экологическими факторами (явление синергизма). Так, смертность от радиации у курильщиков заметно выше. Что касается  генетических последствий радиации, то  они проявляются в виде хромосомных аберраций  (в том числе изменения числа  или структуры  хромосом) и генных мутаций.  Генные мутации  проявляются сразу в первом поколении (доминантные мутации) или только при условии, если у обоих родителей мутантным является один и тот же ген (рецессивные мутации), что является маловероятным.

      Изучение  генетических последствий облучения  еще более затруднено, чем в случае рака. Неизвестно, каковы генетические повреждения при облучении, проявляться они могут на протяжении многих поколений, невозможно отличить их от тех, что вызваны другими причинами. Приходится оценивать появление наследственных дефектов у человека по результатам экспериментов на животных.

      При оценке риска НКДАР использует два  подхода:  при одном  определяют непосредственный эффект данной дозы, при другом –  дозу, при которой удваивается  частота появления потомков с той или иной  аномалией по сравнению с нормальными радиационными условиями.

      Так, при первом подходе установлено, что доза в 1 Гр, полученная при низком радиационном фоне особями мужского пола (для женщин оценки менее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных.

      При втором подходе получены следующие результаты: хроническое облучение при мощности дозы в 1 Гр на одно поколение приведет к появлению около 2000 серьезных генетических заболеваний  на каждый миллион живых новорожденных среди детей тех, кто подвергся такому облучению. Оценки эти ненадежны, но необходимы.  Генетические последствия облучения выражаются такими количественными параметрами, как сокращение продолжительности жизни и периода  нетрудоспособности, хотя при этом признается, что эти оценки не более чем первая грубая прикидка. Так, хроническое облучение населения с мощностью дозы в 1 Гр на поколение сокращает период трудоспособности на 50000 лет, а продолжительность жизни – также на 50000 лет на каждый миллион живых новорожденных среди детей первого облученного поколения; при  постоянном  облучении многих поколений выходят на следующие оценки: соответственно 340000 лет и 286000 лет. 
 
 
 

7. Поражающее воздействие РВ на растения.

Излучение, поглощаемое отдельными растениями, испускается радиоактивными частицами, лежащими на этом растении, а также  находящимися на поверхности почвы  или соседних растениях. В зависимости от размеров частиц, густоты травостоя или плотности насаждений, формы листа и характера его поверхности (гладкая или опушенная) на растениях задерживается от 8 до 25% оседающей на землю радиоактивной пыли. В радиационном поражении растений в отличие от людей и животных главную роль играет бета-, а не гамма-излучение. Это объясняется тем, что бета-частицы, обладая определенной массой и меньшей скоростью, сильнее поглощаются растения­ми. имеющими за счет листьев очень большую поверхность не­посредственного контакта с частицами, препятствовать чему практически невозможно. Вклад бета-излучения в общую поглощенную растениями дозу излучения в первые часы после выпадения может в 10 раз и более превышать вклад гамма-облучения, а это значит, что доза облучения, получаемая растениями, в 10 раз выше экспозиционной дозы гамма-излучения, измеренной дозиметрическим прибором. Радиоактивные вещества, выпадающие на растения, не только загрязняют поверхность, но и всасываются через листья внутрь (йод, цезий), а оказавшись в почве (особенно долго они задерживаются в ее верхнем слое (5—7 см), начинают поступать в растения через корневую систему. Поскольку для этого нужно некоторое время, в течение которого короткоживущие изотопы распадаются, то из почвы поступают долгоживущие радионуклиды, и в первую очередь стронций-90. Эти изотопы депонируются в листьях, стеблях и значительно меньше (до 2%) в зерне. Растения наиболее чувствительны к облучению в ранние фазы развития, когда страдают зоны активного роста, т. е. молодые делящиеся клетки. Существует также видовая и сортовая радиочувствительность.

Лучевое поражение растений проявляется  в замедлении роста и развития, снижении урожайности, понижении репродуктивности семян. Пищевое качество урожая также  снижается. Тяжелое поражение приводит к полной остановке роста и гибели растений через несколько дней или недель после облучения (табл. 5). Степень радиоактивного поражения зависит в основном от величины получаемой дозы облучения и радиочувствительности растения во время облучения.

Радиочувствительность растений сильно зависит от фазы развития их во время облучения. Посевные качества семян в наибольшей степени снижаются  при облучении в фазе колошения  у зерновых и цветения у бобовых.

При выпадении  радиоактивных веществ на лесные массивы продукты деления задерживаются преимущественно кронами деревьев (40—90%), причем лиственных пород лучше, чем хвойных. Атмосферные осадки и ветер перемещают радиоизотопы под полог леса. Часть их проникает внутрь древесных пород и распространяется либо равномерно по всему стволу (береза), либо преимущественно в наружных слоях ствола (сосна). Значительное количество радиоактивных веществ в лесах будет поглощено грибами и ягодами и содержаться в мясе диких зверей и птиц. 
 

8. Определение доз облучения

     Действие  ионизирующих излучений представляет собой сложный процесс. Эффект облучения  зависит от величины поглощенной  дозы, ее мощности, вида излучения, объема облучения тканей и органов. Для  его количественной оценки введены  специальные единицы, которые делятся на внесистемные и единицы в системе СИ. Сейчас используются преимущественно единицы системы СИ. Ниже в таблице 1 дан перечень единиц измерения радиологических величин и проведено сравнение единиц системы СИ и внесистемных единиц. 
 
 
 
 

Таблица 1.

Основные  радиологические  величины и единицы
Величина Наименование  и обозначение  
единицы измерения
Соотношения между 
единицами
Внесистемные Си
Активность  нуклида, А Кюри (Ки, Ci) Беккерель (Бк, Bq) 1Ки = 3.7*1010Бк 
1 Бк = 1 расп/с 
1 Бк=2.7*10-11Ки
Экспозицион- 
ная доза, X
Рентген (Р, R) Кулон/кг 
(Кл/кг, C/kg)
1 Р=2.58*10-4 Кл/кг 
1 Кл/кг=3.88*103 Р
Поглощенная доза, D Рад (рад, rad) Грей (Гр, Gy) 1 рад-10-2 Гр 
1 Гр=1 Дж/кг
Эквивалентная доза, Н Бэр (бэр, rem) Зиверт (Зв, Sv) 1 бэр=10-2 Зв  
1 Зв=100 бэр
Интегральная  доза излучения Рад-грамм (рад*г, rad*g) Грей- кг (Гр*кг, Gy*kg) 1 рад*г=10-5 Гр*кг 
1 Гр*кг=105 рад*г
 

     Для описания влияния ионизирующих излучений  на вещество используются следующие  понятия и единицы измерения:

     Активность  радионуклида в источнике (А). Активность равна отношению числа самопроизвольных ядерных превращений в этом источнике за малый интервал времени (dN) к величине этого интервала (dt) :

A = dN/dt

Единица активности в системе СИ - Беккерель (Бк).

Внесистемная  единица - Кюри (Ки). 

Число радиоактивных ядер N(t) данного изотопа  уменьшается со временем по закону:

N(t) = N0 exp(-tln2 / T1/2) = N0 exp(-0.693t / T1/2)

где No - число радиоактивных ядер в момент времени t = 0, Т1/2 -период полураспада - время, в течение которого распадается половина радиоактивных ядер.

Массу m радионуклида активностью А можно  рассчитать по формуле :

m = 2.4*10-24 M T1/2 A

где М - массовое число радионуклида, А - активность в Беккерелях, T1/2 - период полураспада  в секундах. Масса получается в  граммах. 
 Экспозиционная доза (X). В качестве количественной меры рентгеновского и -излучения принято использовать во внесистемных единицах экспозиционную дозу, определяемую зарядом вторичных частиц (dQ), образующихся в массе вещества (dm) при полном торможении всех заряженных частиц :

X = dQ/dm

     Единица экспозиционной дозы - Рентген (Р). Рентген - это экспозиционная доза рентгеновского и -излучения, создающая в 1куб.см воздуха при температуре О°С и давлении 760 мм рт.ст. суммарный заряд ионов одного знака в одну электростатическую единицу количества электричества. Экспозиционной дозе 1 Р соответствует 2.08*109 пар ионов (2.08*109 = 1/(4.8*10-10)). Если принять среднюю энергию образования 1 пары ионов в воздухе равной 33.85 эВ, то при экспозиционной дозе 1 Р одному кубическому сантиметру воздуха передается энергия, равная : (2.08*109)*33.85*(1.6*10-12) = 0.113 эрг,     а одному грамму воздуха : 
 0.113/ возд = 0.113/0.001293 = 87.3 эрu.    

     Поглощение  энергии ионизирующего излучения  является первичным процессом, дающим начало последовательности физико-химических преобразований в облученной ткани, приводящей к наблюдаемому радиационному эффекту. Поэтому естественно сопоставить наблюдаемый эффект с количеством поглощенной энергии или поглощенной дозы.

     Поглощенная доза (D) - основная дозиметрическая величина. Она равна отношению средней энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме :

Информация о работе Оценка радиационной обстановки на сельскохозяйственном объекте