Размещение электроэнергетики в России

Автор работы: Пользователь скрыл имя, 07 Декабря 2011 в 14:00, контрольная работа

Краткое описание

Основным потребителем электроэнергии остается промышленность, хотя ее удельный вес в общем полезном потреблении электроэнергии значительно снижается.
Электрическая энергия в промышленности применяется для приведения в действие различных механизмов и непосредственно в технологических процессах.

Содержание работы

Введение
1. Понятие электроэнергетики
2. Типы и виды электростанций. Преимущества и недостатки. Развитие и размещение
2.1 Гидроэнергетика РФ
2.2 Атомные электростанции РФ
2.3 Теплоэнергетика РФ
2.4 Нетрадиционные источники энергии РФ
Заключение
Используемая литература

Содержимое работы - 1 файл

контр.работа.эконом.географ.doc

— 136.67 Кб (Скачать файл)

План: 

Введение

1. Понятие электроэнергетики

2. Типы и виды электростанций. Преимущества и недостатки. Развитие и размещение

2.1 Гидроэнергетика РФ 

2.2 Атомные электростанции РФ 

2.3 Теплоэнергетика РФ 

2.4 Нетрадиционные источники энергии РФ 

Заключение 

Используемая литература 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение 

Электроэнергетика, ведущая область энергетики, обеспечивающая электрификацию народного хозяйства страны. В экономически развитых странах технические средства электроэнергетики объединяются в автоматизированные и централизованно управляемые электроэнергетические системы.

Энергетика является основой развития производственных сил в любом государстве. Энергетика  обеспечивает бесперебойную работу промышленности, сельского хозяйства, транспорта, коммунальных хозяйств. Стабильное развитие экономики невозможно без постоянно развивающейся энергетики.

Электроэнергетика наряду с другими отраслями  народного хозяйства рассматривается как часть единой народно - хозяйственной экономической системы. В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Без электроэнергии невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Так же велико значение  электроэнергии в сельском хозяйстве, транспортном  комплексе и в быту. Представить без электроэнергии нашу жизнь невозможно.

Столь широкое распространение объясняется ее специфическими свойствами:

   возможностью превращаться практически во все другие виды энергии (тепловую, механическую, звуковую, световую и другие) с наименьшими потерями;

    способностью относительно просто передаваться на значительные расстояния в больших количествах;

огромным скоростям протекания электромагнитных процессов;

способности к дроблению энергии и образование ее параметров (изменение напряжения, частоты);

невозможностью и, соответственно, ненужностью ее складирования или накопления.

    Основным потребителем электроэнергии остается промышленность, хотя ее удельный вес в общем полезном потреблении электроэнергии значительно снижается.

Электрическая энергия в промышленности применяется для приведения в действие различных механизмов и непосредственно в технологических процессах.

В настоящее время коэффициент электрификации силового привода в промышленности составляет 80%. При этом около 1/3 электроэнергии расходуется непосредственно на технологические нужды.

Отрасли, зачастую не использующие электроэнергию напрямую для своих технологических процессов являются крупнейшими потребителями электроэнергии. 

1. Понятие электроэнергетики

    Электроэнергетика - отрасль промышленности, занимающаяся производством электроэнергии на электростанциях и передачей ее потребителям.

Энергетика является основой развития производственных сил в любом государстве. Энергетика  обеспечивает бесперебойную работу промышленности, сельского хозяйства, транспорта, коммунальных хозяйств. Стабильное развитие экономики невозможно без постоянно развивающейся энергетики. Энергетическая промышленность является частью топливно-энергетической промышленности и неразрывно связана с другой составляющей этого гигантского хозяйственного комплекса - топливной промышленностью.

Текущая задача российской электроэнергетики - правильное и целесообразное использование ресурсов уже имеющихся предприятий этой отрасли, что невозможно без эффективного сотрудничества с другими отраслями промышленности.

2. Типы и виды электростанций. Преимущества и недостатки. Развитие и размещение.

2.1 Гидроэнергетика РФ

    ГЭС находятся на втором месте по количеству вырабатываемой электроэнергии (в 2000г. Около 18%). Гидроэлектростанции являются весьма эффективным источником энергии, поскольку используют возобновимые ресурсы, они просты в управлении (количество персонала на ГЭС в 15--20 раз меньше, чем на ГРЭС) и имеют высокий кпд -- более 80%. В результате производимая на ГЭС энергия самая дешевая. Огромное достоинство ГЭС -- это высокая маневренность, т.е. возможность практически мгновенного автоматического запуска и отключения любого требуемого количества агрегатов. Это позволяет использовать мощные ГЭС либо в качестве максимально маневренных «пиковых» электростанций, обеспечивающих устойчивую работу крупных энергосистем, либо «покрывать» плановые пики суточного графика нагрузки энергосистемы, когда имеющихся в наличии мощностей ТЭС не хватает. Естественно, это под силу только мощным ГЭС.

    Строительство ГЭС требует длительных сроков и больших удельных капиталовложений, связано с потерями земель на равнинах, наносит ущерб рыбному хозяйству. Доля участия ГЭС в выработке электроэнергии существенно меньше их доли в установленной мощности, что объясняется тем, что их полная мощность реализуется лишь в короткий период, причем только в многоводные годы.

Поэтому, несмотря на обеспеченность России гидроэнергетическими ресурсами, ГЭС не могут служить основой выработки электроэнергии в стране.

    Для гидростроительства в нашей стране, как уже говорилось, было характерно сооружение на реках каскадов гидроэлектростанций. Каскад -- группа ГЭС, расположенных ступенями по течению водного потока для последовательного использования его энергии получения электроэнергии, решаются проблемы снабжения населения и производства водой, устранения паводков, улучшения транспортных условий.

    К сожалению, создание каскадов в стране привело к крайне негативным последствиям: потере ценных сельскохозяйственных земель, особенно пойменных, нарушению экологического равновесия.

Наиболее мощные ГЭС построены в Сибири, где освоение гидроресурсов наиболее эффективно: удельные капиталовложения в 2--3 раза ниже и себестоимость электроэнергии в 4--5 раз меньше, чем в Европейской части страны (табл.1).

Табл.1 ГЭС мощностью более 2 млн кВт

Федеральный округ Название Установленная мощность,
  ГЭС млн кВт
Сибирский Саяно-Шушенская

(Рис.1)

6,4
  Красноярская 6,0
  Братская 4,5
  Усть-Илимская 4,3
Приволжский Волжская (Волгоград) 2,5
  Волжская (Самара) 2,3

    ГЭС можно разделить на две основные группы: расположенные на крупных равнинных реках и на горных реках. В нашей стране большая часть ГЭС сооружалась на равнинных реках. Равнинные водохранилища обычно велики по площади и изменяют природные условия на значительных территориях: ухудшается санитарное состояние водоемов; нечистоты, которые раньше выносились реками, накапливаются в водохранилищах, приходится применять специальные меры для промывки русел рек и водохранилищ. Сооружение ГЭС на равнинных реках менее рентабельно, чем на горных.

    Самые крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада:

      Ø Саяно-Шушенская (6,4 млн кВт)

Ø Красноярская (6 млн кВт)

Ø Иркутская (600 тыс. кВт)

Ø Братская (4,5 млн. кВт)

Ø Усть-Илимская (4,3 млн кВт)

Ø строится Богучанская ГЭС (4 млн кВт).

    В Европейской части страны создан крупный каскад ГЭС на Волге. В его состав входят Иваньковская, Угличская, Рыбинская, Городецкая, Чебоксарская, Волжская (вблизи Самары), Саратовская, Волжская (вблизи Волгограда) ГЭС.

Весьма перспективным является строительство гидроаккумулирующих электростанций (ГАЭС). Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами -- верхним и нижним. В ночные чары, когда потребность в электроэнергии мала, эта вода перекачивается из нижнего водохранилища в верхний, потребляя при этом излишки энергии, производимой электростанциями ночью. Днем, когда резко возрастает потребление электричества, вода сбрасывается из верхнего бассейна вниз через турбины, вырабатывающие энергию. Это выгодно, так как остановки ГЭС в ночное время невозможны. Таким образом, ГАЭС позволяют решать проблемы пиковых нагрузок, маневренности использования мощностей энергосетей. В России, особенно в европейской части, остро стоит проблема создания маневренных электростанций, в том числе ГАЭС. Построена Загорская ГАЭС (1,2 млн кВт), строится Центральная ГАЭС (3,6 млн кВт).

    2.2 Атомные электростанции РФ

    Чернобыльская катастрофа вызвала сокращение программы атомного строительства, с 1986 г. в эксплуатацию были введены только четыре энергоблока.

    В настоящее время ситуация меняется. Правительством РФ было принято специальное постановление, фактически утвердившее программу строительства новых АЭС до 2010 г.

Первоначальный ее этап -- модернизация действующих энергоблоков и ввод в эксплуатацию новых, которые должны заменить выбывающие после 2000 г. блоки Билибинской, Нововоронежской и Кольской АЭС.

Сейчас в России действуют девять АЭС. Еще четырнадцать АЭС и ACT (атомных станций теплоснабжения) находятся в стадии проектирования, строительства или временно законсервированы.

    Мощность действующих АЭС:

    
Федеральный округ Название АЭС Установленная мощность, млн кВт
Северо-Западный Ленинградская 

Кольская

4,0

1,76

Центральный Курская Нововоронежская Смоленская

Тверская

4,0

1,8

3,0

2,0

Приволжский Балаковская 4,0
Уральский Белоярская 0,6
Дальневосточный Билибинская 0,048
 

В настоящее время введена практика международной экспертизы проектов и действующих АЭС. В результате проведенной экспертизы были приняты решения: выведены из эксплуатации два блока Воронежской ACT, планируется вывод Белоярской АЭС, остановлен первый энергоблок Нововоронежской АЭС, пересматривается еще ряд проектов. Было установлено, что места расположения АЭС выбраны неудачно, а качество их сооружения и оборудования не всегда отвечало нормативным требованиям.

    Были пересмотрены принципы размещения АЭС с учетом потребности района в электроэнергии, природных условий (в частности, достаточное количество воды), плотности населения, возможности обеспечения защиты людей от недопустимого радиационного воздействия при тех или иных аварийных ситуациях. При этом принимается во внимание вероятность возникновения на предполагаемой площади землетрясений, наводнений, наличие близких грунтовых вод. АЭС должны размешаться не ближе 25 км от городов с численностью более 100 тыс. жителей, для ACT -- не ближе 5 км; ограничивается суммарная мощность электростанций: АЭС -- 8 млн кВт, ACT -- 2 млн кВт.

Информация о работе Размещение электроэнергетики в России