Безпровідна мережа Wi-Fi, її будування

Автор работы: Пользователь скрыл имя, 28 Марта 2012 в 18:37, курсовая работа

Краткое описание

Безпровідне мережне устаткування призначене для передачі по радіоканалам інформації (даних, телефонії, відео та інше) між комп'ютерами, мережними та іншими спеціалізованими пристроями. Першими такими пристроями, що працюють у топології точка-точка були радіорелейні станції, які використовують традиційну амплітудну або частотну модуляцію радіосигналу. Радіорелейні станції в основному використовуються для організації телефонних каналів зв'язку, по яких за допомогою мультиплексорів також можливо передавати дані. З початку 1990-х років стали активно застосовуватися пристрої з кодовою (цифровою) модуляцією радіосигналу. Кодова модуляція радіосигналу приводить до розширення його спектру і зниженню його амплітуди до рівня шумів. Тому такі пристрої отримали назву широкосмугових шумоподібних систем (ШПС). Технологія широкосмугового беспроводового зв'язку гарантує високу якість і надійність комунікацій, стійкість до індустріальних перешкод і погодних умов.

Содержимое работы - 1 файл

курсова1.doc

— 176.00 Кб (Скачать файл)

 

- Висока швидкість розгортання безпроводових локальних мереж.

 

- Близька до нуля вартість експлуатації безпроводових локальних мереж.

 

- Об’єднання територіально віддалених комп’ютерів.

 

Недоліками безпроводових мереж передачі даних є:

 

- Низька безпека і захищеність даних і самих мереж Wi-Fi.

 

- Швидка витрата батарейок через постійну роботу передавача в оснащених Wi-Fi мобільних пристроях.

 

1.2  Огляд стандартів технології Wi-Fi

 

В наш час існує ряд стандартів сімейства IEEE 802.11, зокрема 802.11, 802.11a, 802.11b, 802.11c, 802.11d, 802.11e і багато інших. Але на практиці найбільше часто використаються всього три, що визначені Інженерним інститутом електротехніки й радіоелектроніки (IEEE), це: 802.11b, 802.11g і 802.11a [1,2].

 

IEEE802.11 — початковий стандарт бездротових локальних мереж, заснований на бездротовій передачі даних в діапазоні 2,4 ГГц. Підтримує обмін даними з швидкістю до 1 — 2 Мбіт/с. Прийнятий в 1997 році.

 

IEEE802.11а — стандарт бездротових локальних мереж, заснований на бездротовій передачі даних в діапазоні 5 ГГц. Діапазон роздільний на три непересічні піддіапазони. Максимальна швидкість обміну даними складає 54 Мбіт/с, при цьому доступні також швидкості 48, 36, 24, 18, 12, 9 і 6 Мбіт/с.

 

IEEE802.11b — стандарт бездротових локальних мереж, заснований на бездротовій передачі даних в діапазоні 2,4 ГГц. Він був прийнятий в 1999 році в розвиток прийнятого раніше стандарту IEEE 802.11. У всьому діапазоні існує три непересічні канали, тобто на одній території, не впливаючи один на одного, можуть працювати три різні бездротові мережі. У стандарті передбачено два типи модуляції — DSSS і FHSS. Максимальна швидкість роботи складає 11 Мбіт/с, при цьому доступні також швидкості 5,5, 2 і 1 Мбіт/с. Стандартом 802.11b передбачене автоматичне зниження швидкості при погіршенні якості сигналу[3]. Продукти стандарту IEEE 802.11b, що поставляються різними виготівниками, тестуються на сумісність і сертифікуються організацією Wireless Ethernet Compatibility Alliance (WECA), яка в даний час більше відома під назвою Wi-Fi Alliance.

 

IEEE802.11b+ — покращена версія стандарту 802.11b у виконанні окремих виробників, що забезпечує підвищення швидкості обміну даними. У інтерпретації компанії Texas Instruments відрізняється від оригінального варіанту модуляцією PBCC (Packet Binary Convolutional Coding), подвоєною максимальною швидкістю (до 22 Мбіт/с). Також анонсувалися рішення з продуктивністю, збільшеною до 44 Мбіт/с.

 

ІЕЕЕ802.11e – головне призначення даного стандарту пов'язане з використанням засобів мультимедіа. Він обумовлює механізм призначення пріоритетів різним видам трафіка - таким, як аудіо- і відеододатків. Вимога якості запиту, необхідне для всіх радіо інтерфейсів IEEE WLAN.

 

IEEE802.11g — стандарт бездротових локальних мереж, заснований на бездротовій передачі даних в діапазоні 2,4 ГГц. Він є більш новим стандартом в порівнянні з 802.11b. Максимальна швидкість передачі даних у бездротових мережах IEEE 802.11g становить 54 Мбіт/с. Діапазон розділений на три непересічні канали, тобто на одній території, не впливаючи одна на одну, можуть працювати три різні бездротові мережі. Для збільшення швидкості обміну даними при ширині каналу, схожій з 802.11b, застосований метод модуляції з ортогональним частотним мультиплексуванням (OFDM - Ortogonal Frequency Division Multiplexing), а також метод двійкового пакетного згорткового кодування PBCC (Packet Binary Convolutional Coding). У числі переваг 802.11g треба відзначити низьку споживану потужність, більшу дальність дії й високу проникаючу здатність сигналу. Можна сподіватися й на розумну вартість обладнання, оскільки низькочастотні пристрої простіші у виготовленні.

 

IEEE802.11i — стандарт, що знімає недоліки в області безпеки попередніх стандартів. 802.11i вирішує проблеми захисту даних канального рівня і дозволяє створювати безпечні бездротові мережі практично будь-якого масштабу.

 

IEEE802.11е (QoS, Quality of service) — додатковий стандарт, що дозволяє забезпечити гарантовану якість обміну даними шляхом перестановки пріоритетів різних пакетів; необхідний для роботи таких потокових сервісів як VoIP або IP-TV.

 

IEEE802.11n — стандарт бездротових локальних мереж останнього покоління, заснований на бездротовій передачі даних в діапазоні 2,4 ГГц. Стандарт 802.11n значно перевищує за швидкістю обміну даними попередні стандарти 802.11b і 802.11g, забезпечуючи швидкість на рівні Fast Ethernet; зворотньо сумісний з 802.11b і 802.11g. Основна відмінність від попередніх версій Wi-Fi — додавання до фізичного рівня (PHY) підтримки протоколу MIMO (multiple-input multiple-output).

 

Таблиця 1.1 – Порівняння основних характеристик стандартів IEEE 802.11а, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n[2].Стандарт             

IEEE

 

802.11a             

IEEE

 

802.11b             

IEEE

 

802.11g             

IEEE

 

802.11n

 

діапазон

 

частот, ГГц             

5.15-5.25

 

5.67-5.85              2.4-2.483              2.4-2.483             

2.4-2.483

 

5.15-5.25

 

5.67-5.85

Доступ до радіоканалу              CSMA-СА              CSMA-СА              CSMA-СА              CSMA-СА

 

Кількість абонентів на

 

один канал              50              10              50             

більше

 

100

 

Максимальна швидкість

 

обміну даними              54Мбіт/с              11 Мбіт/с              54Мбіт/с              480 Мбіт/с

Метод модуляції              OFDM              DSSS, FHSS              OFDM              BPSK, QPSK,

Дальність дії в приміщенні              10-20              20-100              20-50              10-20

 

 

 

2. ОПИС ЕФІРНОГО ІНТЕРФЕЙСУ СТАНДАРТУ Wi-Fi

 

Стандарт IEEE 802.11 визначає порядок організації бездротових мереж на рівні управління доступом до середовища (MAC- Medium Access Control) і фізичному (PHY – Physical Transport protocol) рівні. Фізичний рівень поділяється на два таких підрівня:

 

- PLCP (Physical Layer Convergence Protocol – конвергентний протокол фізичного рівня);

 

- PMD (Physical Medium Dependent – залежний від фізичного носія). На рисунку 2.1 показана протокольна архітектура стандарту 802.11 [4].

 

Основними задачами керування рівнем PHY є настройка каналів.

 

2.1 МАС-рівень стандартів IEEE 802.11b та 802.11g

 

Стандарти IEEE 802.11b та 802.11g визначають один тип протоколу доступу до середовища MAC-рівня і три різних протоколи для фізичних (PHY) каналів.

 

Кожен з фізичних рівнів (PHY layer) має свої переваги, що дозволяє користувачам обирати оптимальну для свого випадку реалізацію безпроводової мережі у межах стандарту. Недоліком наявності різних фізичних рівнів в IEEE 802.11 є те, що користувачі повинні додатково погоджувати тип і швидкість своїх мережних засобів, щоб досягти сумісності.

 

Стандарт IEEE 802.11 передбачає передачу сигналу одним з двох методів - прямої послідовності (Direct Sequence Spread Spectrum, DSSS) і частотних стрибків (Frequency Hopping Spread Spectrum, FHSS), які розрізняються способом модуляції, але використовують одну і ту ж технологію розширення спектру. Основний принцип технології розширення спектру (Spread Spectrum, SS) полягає в тому, щоб від вузькосмугового спектру сигналу, що виникає при звичайному потенційному кодуванні, перейти до широкосмугового спектру, що дозволяє значно підвищити завадостійкість переданих даних.

 

Метод FHSS передбачає зміну несучої частоти сигналу при передачі інформації. Для підвищення завадостійкості потрібно збільшити спектр переданого сигналу, для чого несуча частота міняється по псевдовипадковому закону, і кожен пакет даних передається на своїй несучій частоті. При використанні FHSS конструкція приймача виходить дуже простою, але цей метод застосовний тільки якщо пропускна спроможність не перевищує 2 Мбіт/с, так що в доповненні IEEE 802.11b залишився один DSSS. З цього виходить, що спільно з пристроями IEEE 802.11b може застосовуватися тільки те устаткування стандарту IEEE 802.11, яке підтримує DSSS, при цьому швидкість передачі не перевищить максимальної швидкості в "вузькому місці" (2 Мбіт/с)[5].

 

В основі методу DSSS лежить принцип фазової маніпуляції (тобто передачі інформації стрибкоподібною зміною початкової фази сигналу). Для розширення спектру переданого сигналу застосовується перетворення переданої інформації в так званий код Баркера, що є псевдовипадковою послідовністю. При передачі інформації цим методом у мережі IEEE 802.11 розширення досягається за допомогою послідовності (+1, -1, -1, +1, -1, +1, +1, +1, -1, -1, -1), що називається кодом Баркера. На кожен переданий біт виділяється 11 біт в послідовності Баркера. Розрізняють пряму і інверсну послідовності Баркера. Одиничні біти передаються прямим кодом Баркера, а нульові - інверсним. Найголовнішою особливістю даного методу є стійкість до завад і нечутливість до багатопроменевого розповсюдження [5].

 

Під бездротові комп'ютерні мережі в діапазоні 2,4 ГГц відведений досить вузький "коридор" шириною 83 МГц, розділений на 14 каналів. Для виключення взаємних перешкод між каналами необхідно, щоб їх смуги стояли один від одного на 25 МГц. Нескладний підрахунок показує, що в одній зоні одночасно можуть використовуватися тільки три канали. У таких умовах неможливо вирішити проблему відбудови від перешкод автоматичною зміною частоти, от чому в бездротових локальних мережах використовується кодування з високою надмірністю. При ситуації, коли і цей метод не дозволяє забезпечити задану достовірність передачі, швидкість з максимального значення 11 Мбіт/с послідовно знижується до одного з наступних фіксованих значень: 5,5; 2; 1 Мбіт/с. Зниження швидкості відбувається не тільки при високому рівні перешкод, але і якщо відстань між елементами бездротової мережі достатньо велика.

 

Таблиця 2.1 - Порівняння методів DSSS и FHSS [6] DSSS              FHSS

Більша швидкість (на одну точку доступу)              Вища сумарна швидкість передач в одній соті

Більша стійкість до завад              Обладнання дешевше і простіше в установці

Менша потужність, менше завад іншим пристроям              Добре підходить для схем з великою кількістю незалежних передач „точка-точка”

Краще забезпечує схему „точка - багато точок”              Менша дальність

Добре підходить для побудови корпоративних та комерційних мереж              Більше шумить, менше завадостійкість

–              Краще підходить для роботи всередині приміщень

 

 

На МАС-рівні визначаються базові складові архітектури мережі і перелік послуг, що надаються цим рівнем. Він специфікує „правила доступу” до середовища і складається з декількох функціональних блоків. Вони складаються з механізмів для конкурентного (contention) і вільного від конкуренції (contention-free) доступу на різних фізичних середовищах. Функції, що виконуються у рамках МАС, не залежать від швидкості передачі даних або фізичних характеристик середовища передачі даних.

 

МАС є варіантом CSMA (carrіer sense multіple access – стандарт, що використовує єдине середовище передачі) множинного доступу з виявленням несучої і відомий під назвою – розподілена функція координації (DCF, dіstrіbuted coordіnatіon functіon). Стандартом запропоновано дві версії DCF: - основний доступ (basіc access), що базується на двосторонній процедурі встановлення зв'язку;

 

- доступ RTS/CTS (request-to-send/clear-to-send), що базується на чотирьохканальній процедурі встановлення зв'язку (рис. 1). При чому, ймовірність конфліктів для безпроводових вузлів мінімізується шляхом попередньої відправки всім вузлам короткого повідомлення (request to send, RTS) про адресат і тривалість передачі, що має відбутися. Вузли затримують передачу на час, рівний оголошеній тривалості повідомлення. Приймальна станція відповідає на RTS посилкою (CTS – clear to send), по якій передавальний вузол взнає, чи вільне середовище і чи готовий вузол до приймання. Після приймання пакету даних вузол передає підтвердження (АСК) безпомилкового приймання. Якщо АСК не отримано, пакет даних буде переданий повторно [8].

 

В обох випадках тільки перший пакет повинен боротися за середовище. Доступ станцій до середовища ґрунтується на двох періодах часу (часових інтервалах): перший – DІFS (DCF іnterframe space), тобто DCF міжкадровий інтервал, другий – SІFS (short іnterframe space), тобто короткий міжкадровий інтервал. DІFS – міжкадровий інтервал, що використовується, як мінімальна затримка для асинхрон-них кадрів, які змагаються за доступ. SІFS – мінімальний міжкадровий інтервал, що використовується для усіх негайних відповідей у каналі. Причому, SІFS< DІFS.

 

 

 

Рисунок 2.1 - Успішне встановлення зв'язку для методу RTS/CTS

 

Передбачена стандартом специфікація приписує розбиття даних на пакети, що містять контрольну і адресну інформацію. Стандарт рекомендує використовувати пакети довжиною 400 байт для фізичного каналу типу FHSS і 1500 або 2048 для каналу DSSS [].

 

На рисунку 2.2 представлений кадр фізичного рівня при використанні схеми DSSS. Кадр складається з наступних частин – PLPC (попередня комбінація бітів і заголовок) та корисне навантаження. Для передачі PLPC завжди використовується швидкість 1 Мбіт/с, корисне навантаження (тобто дані MAC) може передаватись на швидкості 1 або 2 Мбіт/с.

 

 

 

Рисунок 2.2 – Формат кадру фізичного рівня IEEE 802.11 при використанні методу передачі DSSS

 

На рисунку зображений пакет рівня MAC в стандарті IEEE 802.11 [].

 

 

 

Рисунок 2.3 – Структура пакету IEEE 802.11

 

- Керування кадром. Поле довжиною 2 байти складається з декількох підполей, що несуть інформацію про версію протоколу, тип кадру (керуючий, перевірний, дані), про фрагментацію пакету, що передається, інформацію про конфіденційність і 2-бітового поля системи розподілення (distribution system – DS), що вказує значення чотирьох адресних полів кадру.

 

- Ідентифікатор тривалості. Поле використовується для схеми віртуального резервування каналу з використанням RTS/CTS і містить значення, що вказує період планованого зайняття середовища.

 

- Адресні поля. Чотири адресних поля довжиною 48 біт кожне.

 

- Керування почерговістю. Може статися так, що кадр буде продубльований (внаслідок використання механізму підтвердження приймання). Таким чином, дане поле призначене для виявлення і відсіву дублюючих фрагментів.

 

- Поле даних. Кадр MAC може містити довільні дані (до 2312 байт), що передаються від відправника одержувачу (одержувачам).

 

- Контрольна сума (CRC). 32-бітовий код CRC для перевірки безпомилкової передачі пакету. Кадри рівня MAC можуть передаватися між мобільними станціями, між мобільними станціями і між точкою доступу і точками доступу.

 

 

3. ОСНОВНІ ПРИНЦИПИ ПОБУДОВИ МЕРЕЖІ Wi-Fi

 

 

 

Для стандартів IEEE 802.11b та IEEE 802.11g доступно використання всенаправлених і вузьконаправлених антен. Всенаправлена антена гарантує зв’язок для відстаней до 50 метрів, а вузьконаправлена – до 45 км. При швидкості 1 Мбіт/с відстань надійного зв’язку може досягати декілька сотень метрів. Гранично можлива швидкість обміну визначається автоматично. Одночасно може обслуговуватись до декількох сотень клієнтів. Швидкість, яка буде доступна абонентам буде обернено-пропорційна їх кількості. Важливою особливістю є можливість роботи з мобільними клієнтами[9].

 

Типологічно локальні мережі IEEE 802.11b/g будуються навколо базової станції. Але можливі і схеми з декількома базовими станціями. Базові станції можуть працювати на одних і тих же або на різних частотних діапазонах. Для організації сумісної роботи базових станцій використовуються сигнальні кадри (beacon), які слугують для цілей синхронізації.

Информация о работе Безпровідна мережа Wi-Fi, її будування