Определить влияние информационных технологий на стратегию формирования профессиональной идентичности студентов в вузе будет оптимально

Автор работы: Пользователь скрыл имя, 21 Ноября 2010 в 17:54, реферат

Краткое описание

В работе представлена только теоретическая часть курсовой, посвященная теории игр.

Теория игр — математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу — в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

Теория игр — это раздел прикладной математики. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках — социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение она имеет для искусственного интеллекта и кибернетики, особенно с проявлением интереса к интеллектуальным агентам.

Содержимое работы - 1 файл

Череповецкий Государственный Университет.doc

— 117.00 Кб (Скачать файл)

Череповецкий  Государственный Университет

Инженерно-Эономический Институт 
 
 
 
 
 
 

Курсовая  работа

На тему: «Определить влияние информационных технологий на стратегию формирования профессиональной идентичности студентов  в вузе будет оптимальной» 
 
 

Выполнила: студентка группы 5ЭМ-31

Смирнова  д. Ю.. 
 
 
 
 
 
 
 
 
 
 
 

2009г

Оглавление:

  1. Введение…………………………………………………………………….3
  2. Теоретическая часть………………………………………………………..4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Теоретическая часть.

     Теория  игр — математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу — в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

     Теория  игр — это раздел прикладной математики. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках — социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение она имеет для искусственного интеллекта и кибернетики, особенно с проявлением интереса к интеллектуальным агентам.

     Теория  игр [game theory] — раздел современной математики, изучающий математические модели принятия решений в т. н. конфликтных ситуациях (т. е. ситуациях, при которых интересы участников либо противоположны и тогда эти модели называются антагонистическими играми; либо не совпадают, хотя и не противоположны, и тогда речь идет об “играх с непротивоположными интересами”). Основоположники теории Дж. фон Нейман и О. Моргенштерн попытались математически описать характерные для рыночной экономики явления конкуренции как некую “игру”. В наиболее простом случае речь идет о противоборстве только двух противников, напр., двух конкурентов, борющихся за рынок сбыта. В более сложных случаях в игре участвуют многие, причем они могут вступать между собой в постоянные или временные коалиции, союзы. Игра двух лиц называется парной; когда в ней участвуют n игроков, это “игра n лиц”, в случае образования коалиций игра называется “коалиционной”.

     Суть  игры в том, что каждый из участников принимает такие решения (т. е. выбирает стратегию действий), которые, как он полагает, обеспечивают ему наибольший выигрыш или наименьший проигрыш, причем этому участнику игры ясно, что результат зависит не только от него, но и от действий партнера (или партнеров), иными словами, он принимает решения в условиях неопределенности. Эти решения отражаются в таблице, которая называется матрицей игры, или платежной матрицей.

     Одной из задач теории игр является выяснение  того, возможно ли (и если возможно, то при каких условиях) некоторое  равновесие (компромисс), в наибольшей степени устраивающее всех участников. При этом часто обнаруживается такая  точка (“седловая точка”), в которой достигается подобное равновесие.

     Принципиальным  достоинством теории игр считают  то, что она расширяет общепринятое понятие оптимальности, включая  в него такие важные элементы, как, напр., компромиссное решение, устраивающее разные стороны в подобном споре (игре). На практике же игровые подходы используются отечественными экономистами при разработке моделей, в которых учитываются интересы различных звеньев экономики. Кроме того, математические приемы теории игр могут применяться для решения многочисленных практических экономических задач на промышленных предприятиях. Направления, для выбора оптимальных решений в области повышения качества продукции или определения запасов. “Противоборство” здесь происходит в первом случае между стремлением выпустить больше продукции (затратить на нее, в расчете на единицу, меньше труда) и сделать ее лучше, т. е. затратить больше труда; во втором случае — между желанием запасти ресурсов побольше, чтобы быть застрахованным от случайностей, и запасти поменьше, чтобы не замораживать средства.

     Следует отметить, что подобные задачи решаются и другими экономико-математическими  способами. И это не случайно. Многие задачи теории игр могут быть сведены, направлению, к задачам линейного  программирования, и наоборот.

     При решении экономических задач часто анализировать ситуации, в которых сталкиваются интересы двух или более конкурирующих сторон, преследующих различные цели; это особенно характерно в условиях рыночной экономики. Такого рода ситуации называются конфликтными.

     Математической теорией конфликтных ситуаций является теория игр. В игре могут сталкиваться интересы двух (игра парная) или нескольких (игра множественная) противников; существуют игры с бесконечным множеством игроков. Если во множественной игре игроки образуют коалицию, то игра называется коалиционной; если таких коалиций две, то игра сводится к парной.

     На  промышленных предприятиях теория игр  может применяться для выбора оптимальных решений, например, при  создании рациональных запасов сырья, материалов, полуфабрикатов, когда противоборствуют две тенденции: увеличение запасов, гарантирующих бесперебойную работу производства, сокращения запасов в целях минимизации затрат на их хранение. В сельском хозяйстве теория игр может применяться при решении таких экономических задач, как посева одной из возможных культур, урожай которой зависит от погоды, если известны цена единицы той или иной культуры и средняя урожайность каждой культуры в зависимости от погоды (например, будет ли лето засушливы, нормальным или дождливым); в этом случае одним выступает сельскохозяйственное предприятие, стремящееся обеспечить наибольший доход, а другим — природа.

     Решение подобных задач требует полной определенности формулировании их условий (правил игры); установления количества игроков, выявления возможных стратегий игроков, возможных выигрышей (проигрыш понимается как отрицательный выигрыш). Важным элементом в условии игровых задач является стратегия, т.е. совокупность правил, которые в зависимости от ситуации в игре определяют однозначный выбор действий данного игрока. Если в процессе игры игрок применяет попеременно несколько стратегий, то такая стратегия называется смешанной, а ее элементы — чистыми стратегиями. Количество стратегий у каждого игрока может быть конечным и бесконечным, в зависимости от этого игры подразделяются на конечные и бесконечные.

     Важными являются понятия оптимальной стратегии, цены игры, среднего выигрыша. Эти понятия находят отражение в определении решения игры: стратегии Р* и Q* первого и второго игрока соответственно называются их оптимальными стратегиями, а число V — ценой игры, если для любых стратегий Р первого игрока и любых стратегий Q выполняются неравенства: где М (Р,Q) означает математическое ожидание выигрыши (средней выигрыш) первого игрока, если первым и вторым игроками избраны соответственно стратегии Р и Q.

     Из  неравенств следует, в частности, что  V = M (P*,Q*),т.е. цена игры равна математическому ожиданию выигрыша первого игрока, если оба игрока изберут оптимальные для себя стратегии.

     Одним из основных видов игр являются матричные игры, которыми называются парные игры с нулевой суммой (один игрок выигрывает столько, сколько проигрывает другой) при условии, что каждый игрок имеет конечное число стратегий. В этом случае парная игра формально задается матрицей А = (аij), элементы которой аij определяют выигрыш первого игрока (и соответственно проигрыш второго), если первый игрок выберет i-ю стратегию (i = ), а второй —j-ю стратегию (j = ). Матрица А называется матрицей игры, или платежной матрицей.

     Существует  ряд методов решения матричных  игр. Если матрица игры имеет одну из размерностей, равную двум (у одного из игроков имеется только две  стратегии), то решение игры может  быть получено графически. Известно несколько методов приближенного решения матричной игры, например, метод Брауна. Во многих игровых задачах в сфере экономики неопределенность вызвана не сознательным противодействием противника, а недостаточной осведомленностью об условиях, в которых действуют стороны.

     Когда одной из сторон выступает природа, когда неизвестно заранее погода, игры называются – играми с природой. В этих случаях строки матрицы игры соответствуют стратегии игрока, а столбцы — состояниям «природы». В ряде случаев при решении такой игры рассматривают матрицу рисков.

     При решении игр с природой используется так же ряд критериев: критерий Сэвиджа, критерий Вальда, критерий Гурвица  и др.

     При максимальном критерии Вальда оптимальным считается та стратегия лица, принимающего решение, которая обеспечивает максимум минимального выигрыша; применяя этот критерий, ЛПР в большей степени ориентируется на наихудшие условия (этот критерий иногда называют критерием «крайнего пессимизма»).

     Критерий  минимаксного риска Сэвиджа предполагает, что оптимальной является та стратегия, при которой величина риска в наихудшем случае минимальна.

     При использовании критерия «пессимизм — оптимизма” Гурвица ЛПР выбирает некоторый так называемый “коэффициент пессимизма» q; при q = 1 критерий Гурвица приводится к критерию Вальда («крайнего пессимизма»), а при критерию q=0 «крайнего оптимизма».

     Классификация игр.

     Классификацию игр можно проводить: по количеству игроков, количеству стратегий, характеру  взаимодействия игроков, характеру  выигрыша, количеству ходов, состоянию информации и т.д.

     В зависимости от количества игроков  различают игры двух и  игроков. Первые из них наиболее изучены. Игры трёх и более игроков менее исследованы из-за возникающих принципиальных трудностей и технических возможностей получения решения. Чем больше игроков - тем больше проблем.

     По  количеству стратегий игры делятся  на конечные и бесконечные. Если в  игре все игроки имеют конечное число  возможных стратегий, то она называется конечной. Если же хотя бы один из игроков имеет бесконечное количество возможных стратегий игра называется бесконечной.

     По  характеру взаимодействия игры делятся  на:

  1. бескоалиционные: игроки не имеют права вступать в соглашения, образовывать коалиции; 
  2. коалиционные (кооперативные) – могут вступать в коалиции.

     В кооперативных играх коалиции наперёд определены.

     По  характеру выигрышей игры делятся  на: игры с нулевой суммой (общий капитал всех игроков не меняется, а перераспределяется между игроками; сумма выигрышей всех игроков равна нулю) и игры с ненулевой суммой.

     По виду функций выигрыша игры делятся на: матричные, биматричные, непрерывные, выпуклые, сепарабельные, типа дуэлей и др.

     Матричная игра – это конечная игра двух игроков с нулевой суммой, в которой задаётся выигрыш  игрока 1 в виде матрицы (строка матрицы соответствует номеру применяемой стратегии игрока 2, столбец – номеру применяемой стратегии игрока 2; на пересечении строки и столбца матрицы находится выигрыш игрока 1, соответствующий применяемым стратегиям).

     Для матричных игр доказано, что любая  из них имеет решение и оно может быть легко найдено путём сведения игры к задаче линейного программирования.

     Биматричная игра – это конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока (в каждой матрице строка соответствует стратегии игрока 1, столбец – стратегии игрока 2, на пересечении строки и столбца в первой матрице находится выигрыш игрока 1, во второй матрице – выигрыш игрока 2.)

     Для биматричных игр также разработана  теория оптимального поведения игроков, однако решать такие игры сложнее, чем обычные матричные.

     Непрерывной считается игра, в которой функция выигрышей каждого игрока является непрерывной в зависимости от стратегий. Доказано, что игры этого класса имеют решения, однако не разработано практически приемлемых методов их нахождения.

     Если  функция выигрышей является выпуклой, то такая игра называется выпуклой. Для них разработаны приемлемые методы решения, состоящие в отыскании чистой оптимальной стратегии (определённого числа) для одного игрока и вероятностей применения чистых оптимальных стратегий другого игрока. Такая задача решается сравнительно легко. 

Информация о работе Определить влияние информационных технологий на стратегию формирования профессиональной идентичности студентов в вузе будет оптимально