Табличные производные

Автор работы: Пользователь скрыл имя, 12 Апреля 2012 в 17:57, реферат

Краткое описание

Поставим своей задачей определить скорость, с кото¬рой изменяется величина у в зависимости от изменения величины х. Так как нас интересуют всевозможные слу¬чаи, то мы не будем придавать определенного физического смысла зависимости y=f(x), т.е. будем рассматривать величины х и у как математические.
Рассмотрим функцию y=f(x), непрерывную на от¬резке [а, b]. Возьмем два числа на этом отрезке: х и х+∆x; первое, х, в ходе всего рассуждения считаем неизменным, ∆x — его приращением.

Содержание работы

Производная функция:…………………………………………………………….3
1. Производная функция …………………….…………………………………...3
2. Касательная к кривой …………………………………………..…...…………6
3. Геометрический смысл производной …………………………………….…..8
4. Зависимость между дифференцируемостью и непрерывностью функции…10
Производные от элементарных функций: …………..……………...……………11
1. Производная постоянной ……………………………………………………...11
2. Таблица элементарных производных ………………..…….…….…………...12
3. Правила дифференцирования ……………………………………….………...12
Изучение функций с помощью производной: …………………………..…….…13
1. Признаки постоянства, возрастания и убывания функций …………….……13
2. Задачи на отыскание наибольших и наименьших значений величин……….16
3. Максимум и минимум функции ………………………………...……………..18
4. Признаки существования экстремума ……….……………………..…...…….19
5. Правило нахождения экстремума …………………………………....……..…22
6. Нахождение экстремума при помощи второй производной …………......….22
7. Направление вогнутости кривой ………………………………….....……..….25
8. Точки перегиба ………………………………….……………..……..……..….26
9. Механическое значение второй производной ……………………….….........28
Дифференциал: ………………………...……………………………….……..…...29
1. Сравнение бесконечно малых ………………………….………..…..…..…….29
2. Дифференциал функции …………………..………………….…..……….…...30
3. Дифференциал аргумента. Производная как отношение дифференциалов...33
4. Приложения понятия дифференциала к приближенным вычислениям….....35
Примеры применения производной в физике ..………………………….………35
Список литературы …………………………………………………….………….42

Содержимое работы - 1 файл

производная111.doc

— 377.00 Кб (Скачать файл)

Отсюда:

f(c-Δx)-f(c)<0 и f(c + Δx)-f(с)<0.

Левые части неравенств выражают приращение функции в точке х = с при изменении аргумента соответственно на — Δx и + Δx. Составив отношение приращения функции к приращению аргумента, получаем:

(f(c —Δx)—f(с))/(-Δx))>0         (1);                               (f(с + Δx)—f(с)/(+Δx))<0            (2) Оба отношения (1) и (2) имеют один и тот же предел при Δx → 0, так как по условно функция f(x) имеет в точке с определенную произвольную:

 

 

Из неравенства (1) следует, что f '(с)  либо положительна, либо равна  нулю, а неравенство (2) показы­вает, что f '(с) не  может быть положительной. Следовательно,

f‘(c) = 0,

что и требовалось доказать.

2°. Теорема (достаточный признак). Если в окрестности 2δ точки x = с:

1) функция f(x) непрерывна,

2) ее производная, f '(х), слева от точки х = с по­ложительна, а справа отрицательна, то значение х = с есть точка максимума функции.

Доказательство. Данная функция непрерывна в точке c, поэтому число f(с) есть общий пре­дел для f(c — Δx) и f(c+Δx) при Δx → 0 (как и в предыдущей теореме, здесь и в последующем 0 < Δx< δ):

 

 

Данная функция f(x) в левой полуокрестности точки с — возрастающая, так как ее производная слева от точки с положительна, а в правой полуокрестности — убывающая, так как ее производная справа от точки с отрицательна (черт.), и вследствие этого ее значения

f(c —Δx) и f(c+Δx)

возрастают при стремлении Δx к нулю (по определению убывающей функции, меньшему значению аргумента отвечает большее значение функции, т. е. при x1>x2 f(x1)<f(x2)).

Другими словами, как f(c — Δx), так и f(c+Δx) приближаются к своему пределу f(с) так, что для каждого значения Δx ≠ 0:

f(c - Δx) < f(c) и f(c + Δx) < f(c).

Но в таком случае f(c) есть максимум функции f(x) в точке х = с.

3°. Так же можно доказать, что если в окрестности 2δ точки х = с:

1) функция f(x) непрерывна, 2) производная f '(x) слева от точки х = с отрицательна, а справа положительна, то значение х = с есть точка минимума функции (черт.).

4°. Как в точке максимума, так и в точке минимума производная равна нулю (1°). Обратное неверно. Функция может не иметь ни максимума, ни минимума в точке, в которой производная равна нулю.

Например, функция у = х3 имеет в точке x =0 производную, равную нулю. Однако в точке х = 0 нет ни максимума, ни минимума, функция у = х3 при всех значениях х, в том числе и при x = 0, возрастает. Отсюда, в точке х=с функция f(x) не имеет на максимума, ни минимума, если при х = с ее производная равна нулю и имеет один и тот же знак как слева, так и справа от точки х = с.

5°. Определение. Значения аргумента х, при которых производная f '(х) равна нулю, называются стационарными точками.

Касательная в стационарных точках параллельна оси Ох. В окрестности точки максимума касательная состав­ляет с осью абсцисс острый угол, если точка лежит слева от точки максимума, и тупой угол, если справа от нее (черт.). В случае минимума, напротив, касательная составляет с осью абсцисс тупой угол, если точка находится слева от точки минимума, и острый, если справа от нее (черт.).

 

Правило нахождения экстремума

 

1°. Чтобы найти экстремум функции, надо:

1) найти производную данной функции;

2) приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума;

3) определить знак производной в каждом из промежутков, отграниченных стационарными точками;

4) если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции;

5) затенить в данном выражении функции аргумент значением, которое дает максимум или минимум функции; получим значение соответственно максимума или минимума функции.

Если функция имеет точки разрыва, то эти точки должны быть включены в число стационарных точек, разбивающих Ох на промежутки, в которых определяется знак производной.

 

Нахождение экстремума при помощи второй производной

 

1°. Лемма. Если при х = с производная положительна (или отрицательна), то в достаточно малой окрестности точки х = с приращение функции и приращение аргумента в точке с имеют одинаковые (или разные) знаки.

Доказательство от противного. Пусть для определенности f '(c)>0, т.е.

Предположим, что при стремлении ∆x к нулю приращения ∆y и ∆x имеют разные знаки. Тогда отношение ∆y/∆x отрицательно и его предел

f '(c) ≤ 0,

что противоречит условию.

Так же доказывается и вторая часть леммы.

2°. Теорема. Если при х = с первая производная функции f(x) равна нулю, f '(c)=0, а вторая производная положительна, f "(c)>0, то в точке х = с функция f(x) имеет минимум;

если же вторая производная отрицательна, f "(с) < 0, то в точке х = с функция f(x) имеет максимум.

Доказательство. Вторая производная по отношению к первой производной является тем же, чем первая производная по отношению к данной функции, т. е.

 

 

Согласно лемме, если при х = с производная (в данном случае вторая) положительна, то в достаточно малой окрестности 2δ точки с приращение функции (в данном случае первой производной) имеет тот же знак, что и приращение аргумента. Слева от точки с приращение аргумента отрицательно, значит, и приращение функции отрицательно, т.е.

f '(c — ∆x)—f(c)<0,            (0 < ∆x < δ).

Отсюда:

  f '(c-∆x)<f '(c) = 0.                                                        (1).

Справа от точки с приращение аргумента положительно, т. е.

f '(c +∆x)-f '(c)>0.

Отсюда:

f '(c + ∆x)>f '(c) = 0.                                                         (2)

Получили: первая производная функции f(x) слева от точки с отрицательна (1), а справа положительна (2). Значит, в точке х = с функция f(x) имеет минимум, как это и требовалось доказать.

Так же доказывается теорема и в случае f "(с)<0.

3°. Доказанная теорема определяет второй способ нахождения экстремума. Он отличается от первого тем, что третья и четвертая операции первого способа заменяются: а) нахождением второй производной и б) определением ее знака в стационарной точке. Результат исследования можно выразить так:

Если знак числа f "(с),

то при х = с   f(x) имеет

 

плюс

минус

 

минимум

                        максимум

 

 

 

 

 

Если f '(с) = 0, то исследование функции на максимум и минимум надо провести первым способом.

4°. Пример 1. Исследовать вторым способом на максимум и минимум функцию:

у = 5 — х2 — х3 — x4/4.

Решение. 1. Находим первую производную:

y ' = - 2х - Зx2 — x3

2. Приравниваем первую производную нулю и решаем полученное уравнение:

— 2x — Зx2 — x3 = 0, или x(x2+3х+2) = 0,

отсюда x = 0 или x2+ 3х + 2 = 0.

Решая квадратное уравнение x2 + 3х + 2 = 0, получаем:

x = (-3 + 1)/2.

Стационарных точек три: x1 = — 2, x2 = — 1 и х3 = 0.

3. Находим вторую производную:

у" = — 2 - бx — Зx2.

4. Определяем знак второй производной, заменяя х его значением сначала в первой, затем  во второй и потом в третьей стационарной

точке:

при х = — 2 у'' = — 2 — 6(— 2) — 3(— 2)2 = — 2, при х = — 1  у" = — 2 — 6(— 1) — 3(— l)2 = + 1, при x = 0  у" = — 2.

Следовательно, данная функция имеет минимум при х = —1 и максимум при х = — 2 и при х =0,

Пример  2, Исследовать на максимум и минимум функцию: у = х4.

Решение: 1) y' = 4x3;

2) 4х3 = 0; х = 0;

3) y" = 12x2;

4) при х = 0  y" = 0.

Так как оказалось, что вторая производная равна нулю, то исследование ведем первым способом: при х < 0   у' = 4x3 < 0, а при х > 0    у' = 4x3 > 0. Следовательно, функция у = х4 имеет минимум в точке x = 0.

5°. Второй способ нахождения экстремума имеет смысл применять в том случае, когда вторая производная отыскивается просто; если же дифференцирование сопровождается трудными преобразованиями и не упрощает выражение первой производной, то первый способ может быстрее привести к цели.

 

Направление вогнутости кривой

 

Пусть две точки M1 и M2 имеют одну и ту же абсциссу. Если при этом ордината точки M1 более (менее) ординаты точки M2, то говорят, что точка M1 лежит выше (ниже) точки M2. Говорят также, что в промежутке а<х<b линия y = f(x) лежит выше (ниже) линии у=φ(х), если в этом промежутке каждая точка первой линии лежит выше (ниже) соответствующей ей точки второй линии, т. е. если

f(x)> φ(x) [или f(x)< φ(x)].

Определение. В промежутке а < х < b кривая— график дифференцируемой функции y=f(x) — называется вогнутой вверх (вниз), если она лежит выше (ниже) касательной в любой точке данного промежутка.

Кривая, изображенная на черт., является вогнутой, вверх в промежутке а < х < b и вогнутой вниз в промежутке b < х < с.

2°. В более подробных курсах анализа доказывается, что если производная f '(х) — возрастающая (убывающая) функция в промежутке а < х < b, то кривая y=f(х) является вогнутой вверх (вниз) в этом промежутке.

Чтобы уяснить эту теорему, наметим на оси Ох (черт.)

произвольно ряд точек и проведем через каждую из них

прямую так, чтоб и угловом коэффициент прямой возрастал с возрастанием абсциссы намеченных точек; затем, приняв эти прямые за касательные к неко­торой кривой линии [tgφ = f '(x)], построим эту кривую линию. Мы видим, что она может лежать только выше каждой из проведенных касательных.

3°. Достаточный признак вогнутости вверх (вниз). Если в промежутке а<х<b вторая производная f ''(x) положительна (отрицательна), за исключением отдельных точек, в которых она равна нулю, то кривая у=f(х) в этом промежутке вогнута вверх (вниз).

Действительно, если в промежутке а<х<b вторая производная f "(x), например, положительна, за исключением отдельных точек, в которых она равна нулю, то первая производная f '(х)—возрастающая функция, а кривая y = f(x), согласно предыдущему, является вогнутой вверх.

Если f "(x) = 0 не в отдельных точках, а в некотором промежутке, то в этом промежутке f '(x) — постоянная функция, a f(x) — линейная функция, график ее — прямая линия, и говорить о вогнутости не имеет смысла.

 

Точки перегиба

 

1°. Определение, Если в некоторой окрестности точки х = с кривая —график дифференцируемой функции y = f(x) — имеет слева и справа от точки х = с вогнутости противоположного направления, то значение х = с называется точкой перегиба.

Точку М кривой (черт.), абсцисса которой х = с, называют также точкой перегиба, она отделяет дугу кривой, вогнутую вверх, от дуги, вогнутой вниз. Точкой перегиба может быть только та точка, в которой к кривой имеется касательная. В окрестности точки перегиба кривая лежит по обе стороны от касательной: выше и ниже ее. Заметим, что она расположена также по обе стороны от нормали. Но такая точка, как Р (черт.), в которой единственной касательной не имеется, точкой перегиба не является.

2°. Так как слева и справа от точки перегиба х = с вогнутости кривой y=f(x) разного направления, то вторая производная f "(x) имеет слева и справа от точки х = с разные знаки или равна нулю. Полагая вторую производную непрерывной и окрестности точки х = с, заключаем, что в точке перегиба она равна нулю, т. е.

f(c) = 0.

3°. Отсюда следует правило нахождения точек перегиба:

1) найти вторую производную данной функции;

2) приравнять ее нулю и решить полученное уравнение (или найти те значения х, при которых производная теряет числовой смысл), из полученных корней отобрать действительные и расположить их no величине от меньшего к большему;

3) определить знак второй производной в каждом, из промежутков, отграниченных полученными корнями;

4) если при этом в двух промежутках, отграниченных исследуемой точкой, знаки второй производной окажутся разными, то имеется точка перегиба, если одинаковыми, то точки перегиба нет.

4°. Примеры. Найти точки перегиба и определить проме­жутки вогнутости вверх и вниз кривых:

1) у = lп х.

Р е ш е н и е. Находим вторую производную:

y '=1/x;       y ''= -1/x2.

При всяком значении x = (0 < х <+∞) у" отрицательна. Значит, логарифмика точек перегиба не имеет и обращена вогнутостью вниз.

2) у = sin x.

Решение. Находим вторую производную:

y' =cos x,         y'' = -sin x.

Полагая  - sin x = 0, находим, что x = kπ, где k - целое число.

Если 0 < x< π, то sin x положителен и y '' отрицательна, если же π < x< 2π, то sin x отрицателен и y'' положительна и т. д. Значит, синусоида имеет точки перегиба 0, π, 2π,...

В первом промежутке 0 < x< π она обращена вогнутостью вниз, во втором   - вогнутостью вверх и т. д.

 

Механическое значение второй производной

 

Предположим, что точка движется прямолинейно и пройденный ею путь определяется уравнением s = f(t), где t время. Скорость v в момент времени t есть производная от пути по времени, т. е.

Информация о работе Табличные производные