Вопросы, ответы, задачи по теории вероятностей

Автор работы: Пользователь скрыл имя, 21 Ноября 2012 в 13:13, шпаргалка

Краткое описание

Теория вероятностей

Содержимое работы - 1 файл

билеты теории вероятности.rtf

— 2.42 Мб (Скачать файл)

Библиотека 5баллов.ru

 

Соглашение об использовании

Материалы данного файла могут быть использованы без ограничений для написания собственных работ с целью последующей сдачи в учебных заведениях.

Во всех остальных случаях полное или частичное воспроизведение, размножение или распространение материалов данного файла допускается только с письменного разрешения администрации проекта www.5ballov.ru.

Ó РосБизнесКонсалтинг и МКР


 

 

 

Вопросы по теории вероятностей

  1. +Основные понятия теории вероятностей: события, вероятность события, частота события, случайная величина.
  2. +Сумма и произведение событий, теоремы сложения и умножения вероятностей.
  3. +Дискретные случайные величины. Ряд, многоугольник и функция распределения.
  4. +Непрерывные случайные величины. Функция и плотность распределения.
  5. +Функция распределения; квантиль и а -процентная точка распределения.
  6. +Формула полной вероятности и теорема гипотез.
  7. +Числовые характеристики случайных величин: моменты; дисперсия; и среднеквадратичное отклонение.
  8. -
  9. +Равномерное распределение, его числовые характеристики.
  10. +Биномиальное распределение, распределение Пуассона.
  11. +Нормальное (Гаусовское) распределение, стандартные нормальные распределения.
  12. Стандартная нормальная случайная величина.
  13. +Независимые и зависимые случайные величины: ковариация, корреляция, коэффициент корреляции.
  14. +Теоремы о числовых характеристиках.
  15. +Закон больших чисел, неравенства и теоремы Чебышева, Бернулли.
  16. +Центральная предельная теорема теории вероятностей.
  17. Выборки, объем выборки.
  18. Состоятельные, не смешенные и эффективные оценки; оценивание среднего значения и дисперсии.
  19. +Доверительные интервалы.
  • +Теорема о повторении опытов.
  • Задача_1
  • Задача_2
  • Задача_3
  • Задача_4
  • Задача_5
  • Задача_6
  • Задача_7
  • Задача_8
  • Задача_9

 

Ответ на билет 1

 

X - случайная величина.

x - значение случайной величины.


 

- непрерывная случайная величина

 

 

Дискретная случайная величина - можно пересчитать.

Практически не возможное событие, вероятность которого близка к нулю 0 (0,01; 0,1).

Практически достоверное событие, вероятность которого близка к единице 1 (0,99; 0,9888).

 

Вернуться к вопросам

 

Ответ на билет 2

 

Сумма событий и произведение событий.

А,В,….,G - события

Суммой событий называется некоторое событие S=A+B+….+G=A B …. G, состоящее в появлении хотя бы одного из этих событий.

Пример: Допустим идет стрельба по мишени

А1 - попадание при первом выстреле

А2 - попадание при втором выстреле

S=A1+A2 (хотя бы одно попадание)

 

Произведением некоторых событий называется событие, состоящее в совместном появлении всех этих событий. S=ABC…G=

Пример: А1 - промах при первом выстреле

А2 - промах при втором выстреле

А3 - промах при третьем выстреле

(не одного попадания)

 

Теорема сложения вероятностей.

Вероятность двух не совместных событий равна сумме вероятностей этих событий.

P(A) P(B)

P(A+B)=P(A)+P(B)

S=S1+S2+…+Sn

P(S)=P(S1)+P(S2)+…+P(Sn)

Следствие: Если событие S1, S2, …, Sn образуют полную группу не совместных событий, то сумма их вероятностей равна 1.

Противоположными событиями называются два не совместных события, образующие полную группу

. (пример - монетка имеющая орел и орешко)

Если два события A и B совместны, то вероятность совместного появления двух событий вычисляется по формуле:

Условие независимости события А от события В: P(A|B)=P(A), то P(B|A)=P(B)

Условие зависимости события А от события В: P(A|B) P(A), P(B|A) P(B) (Если А не зависит от В, то и В не зависит от А - условие не зависимости условий взаимно).

Вероятность произведения двух событий равна произведению вероятности одного из событий на условную вероятность другого, вычисленную при условии, что событие первое имело место:

P(AB)=P(A)P(B|A), P(AB)=P(B)P(A|B)

Следствие: Вероятность произведения нескольких не зависимых событий равна произведению вероятностей этих событий. P(A1A2…An)=P(A1)P(A2)…P(An)

Пример: на монете выпадет орел 2 раза

S=AорAор S=P2(A)=(1/2)2=1/4

 

Вернуться к вопросам

 

Ответ на билет 3

 

Закон распределения случайных величин

Ряд и многоугольник распределений. Случайная величина - это величина, которая в результате опыта может принять то или иное значение не известное заранее какое.

Большие буквы - случайные величины. Малые буквы - их возможные решения.

Рассмотрим случайную дискретную величину Х с возможными значениями x1, x2, …, xn

В результате опыта :

Обозначим вероятность соответствующих событий через Pi

, так как рассматриваемые события образуют полную группу не совместных событий, то

Х полностью описана с вероятностной точки зрения, если мы зададим распределение вероятности pi(i=1,2…,n), то есть в точности указаны решения вероятности pi каждого события xi

Этим будет установлен закон случайной величины xi.

Законом распределения случайной величины называется всякое соотношение устанавливающее связь между возможными значениями случайных величин и соответствующими вероятностями.


Простейшей формой записи законов распределения является таблица:


X

x1, x2, …, xn

P

p1, p2, …, pn


 

 

Многоугольник и ряд распределения полностью характеризует случайную величину и является одной из форм законов распределения. (Для непрерывной случайной величины построить невозможно).

 

Вернуться к вопросам

 

Ответ на билет 4

 

Плотность и функция распределения.

Функция распределения непрерывной случайной величины (Х), задана выражением:

    1. Найти коэффициент а
    2. Найти плотность распределения F(x)
    3. Найти вероятность попадания случайной величины на участок P(0,5<x<3)=?
    4. Построить график функций


F(4)=1 -> a4=1, a=0,25



- два способа решения.

 

Вернуться к вопросам

 

Ответ на билет 5

 

Функция распределения

Для непрерывной случайной величины Х вместо вероятности равенства Х=х используют вероятность Р(Х<х). F(x)=P(X<x)

F-функция распределения случайной величины х

F(x) -интегральный закон распределения или интегральная функция распределения.

F(x) -самая универсальная характеристика случайной величины, она существует для всех случайных величин как дискретных так и непрерывных.

Основные свойства функции распределения.

  1. Функция распределения F(x) есть не убывающая функция своего аргумента, т.е. при x2>x1 F(x2)>=F(x1)
  2. При функция распределения F(x)=0; F( )=0
  3. При F(x)=1; F( )=1


 

 

 

 

Для дискретной случайной величины:


Функция распределения любой дискретной случайной

величины всегда есть разрывная ступенчатая функция,

скачки которых происходят в точках соответствующих

возможных значений случайных величин и равны

вероятностям этих значений. Сумма всех скачков

равна 1.

F(x) непрерывной случайной величины

    Часто используют величины квантиль и -процентная точка


Квантиль - решение уравнения

- процентная точка определяется из уравнения

 

 

 

 

Вернуться к вопросам

 

Ответ на билет 6

 

Формула полной вероятности.

Пусть требуется определить вероятность некоторого события А, которое может произойти вместе с одним из событий H1, H2, …, Hn, образующие полную группу не совместных событий. Эти события назовем гипотезами. Докажем, что в этом случае вероятность событий:

Вероятность события А вычисляется как сумма произведений вероятностей каждой гипотезы на условную вероятность события при этой гипотезе.

  применяем 2е теоремы:

-формула полной вероятности




 

 

 

 

 

Теорема гипотез (формула Байеса).

Пусть вероятность полной группы не совместных гипотез H1, H2, …, Hn известны и равны P(H1), P(H2), …, P(Hn). Событие А может появиться совместно с условной вероятностью P(A|Hi) (i=1,2,…,n).

Спрашивается, как следует изменить вероятности гипотез после проведения опытов в связи с появлением этого события. Иными словами, требуется найти условную вероятность P(Hi,A).

 

Формула Байеса:  

 

 

Вернуться к вопросам

 

Ответ на билет 7

 

Числовые характеристики случайных величин.



Закон распределения случайных величин, представленный в той или иной форме, дает исчерпывающее описание случайной величины. Наиболее существенные особенности распределения в компактной форме описываются так называемыми числовыми характеристиками случайных величин. Они играют в теории вероятности огромную роль, с их помощью облегчается решение вероятностных задач. Рассмотрим наиболее часто встречающиеся числовые характеристики.

 

Характеристики положения.


 

Мат. Ожидание     Мода    Медиана

 

Важнейшая характеристика математическое ожидание, которая показывает среднее значение случайной величины.

Математическое ожидание величины Х обозначается М[X], или mx.

Для дискретных случайных величин математическое ожидание:

Сумма значений соответствующего значения на вероятность случайных величин.

 

Модой (Mod) случайной величины Х называют ее наиболее вероятное значение.

Для дискретной случайной величины.  Для непрерывной случайной величины.


 

 

 

 

 

 

 

 

Mod=X3        Mod=X0

Одно-модальное распределение


 

Много модальное распределение

В общем случае Mod и математическое ожидание не

совпадают.

 

 

 

 

 

Медианой (Med) случайной величины Х называют такое значение, для которой вероятность того что P(X<Med)=P(X>Med). У любого распределения Med может быть только один.


Med разделяет площадь под кривой на 2 равные части.      В случае одно-модального и симметричного распределения

mx=Mod=Med

 

 

 

 

 

Моменты.

Чаще всего на практике применяются моменты двух видов начальное и центральное.

Начальный момент. -го порядка дискретной случайной величины Х называется сумма вида:

  

Для непрерывной случайной величины Х начальным моментом порядка называется интеграл , очевидно, что математическое ожидание случайной величины есть первый начальный момент.

Пользуясь знаком (оператором) М, начальный момент -го порядка можно представить как мат. ожидание -ой степени некоторой случайной величины.

 

Центрированной случайной величиной соответственной случайной величины Х называют отклонение случайной величины Х от ее математического ожидания:

 Математическое ожидание центрированной случайной величины равно 0.

Для дискретных случайных величин имеем:


 


 

 

 

 

 

 

 

 

 

 

 

Моменты центрированной случайной величины носят название Центральных моментов

 

Центральный момент порядка случайной величины Х называют математическим ожиданием -ой степени соответствующей центрированной случайной величины.

Для дискретных случайных величин:

Для непрерывных случайных величин:

  

 

Связь между центральными и начальными моментами различных порядков

Из всех моментов в качестве характеристики случайной величины чаще всего применяют первый момент (мат. ожидание) и второй центральный момент .

 

Второй центральный момент называют дисперсией случайной величины. Он имеет обозначение:

Согласно определению

Для дискретной случайной величины:

Для непрерывной случайной величины:

Дисперсия случайной величины есть характеристика рассеянности (разбросанности) случайных величин Х около ее математического ожидания.

Дисперсия означает рассеивание. Дисперсия имеет размерность квадрата случайной величины.

Для наглядной характеристики рассеивания удобнее использовать величину, my той, что и размерность случайной величины. С этой целью из дисперсии извлекают корень и получают величину, называемую - среднеквадратичным отклонением (СКО) случайной величины Х, при этом вводят обозначение:

Информация о работе Вопросы, ответы, задачи по теории вероятностей