Задачи на "Проценты"

Автор работы: Пользователь скрыл имя, 24 Октября 2011 в 00:21, задача

Краткое описание

Задачи на «концентрацию», «сплавы», «банковские расчеты» – это хорошие примеры практических задач, позволяющих продемонстрировать, как формальные алгебраические знания применяются в реальных жизненных ситуациях. Для того чтобы осознать на новом уровне подход к решению задач с процентами, стоит обратить внимание на то, что здесь приводятся образцы решения ряда задач. К разобранному образцу при желании можно вернуться вновь и использовать его в качестве опоры при решении подобной задачи.

Содержимое работы - 1 файл

задачи.doc

— 327.50 Кб (Скачать файл)

Задачу  можно было бы решить и иначе: сначала  найти, сколько процентов составит сумма на счете в конце года от первоначальной – 100% + 30% = 130%, а затем  вычислить 130% от 1500 руб.

Задача 5. Какую сумму следует положить в банк, выплачивающий 25% годовых, чтобы по истечении года получить 1000 руб.?

Решение.

  1. 100% + 25% = 125% - составляет 1000 руб. от первоначального вклада.
  2. 125% = 1,25 = 800 (руб.) – сумма вклада.

Ответ: сумма вклада 800 руб.

Задача  6. В 200г. воды растворили 50г. соли. Какова концентрация полученного раствора?

  Решение.

Концентрация  раствора – это процент, который  составляет масса вещества в растворе от массы раствора. Поэтому требуется  вычислить процент, который составляет 50г. соли всей массы раствора:

  1. 50 + 200 = 250 (г.) – масса полученного раствора.
  2. (50 / 250) * 100 = 50 * 100 / 250 = 20 (%).

Ответ: концентрация раствора равна 20%.

Задача 7. В течение января цена на яблоки выросла на 30%, а в течение февраля – на 20%. На сколько процентов поднялась цена за 2 месяца?

Решение.

Утверждать, что цена выросла на 50%, нельзя, поскольку  «первые» 30% подсчитываются от цены в  конце декабря, а «вторые» 20% - от другой величины, цены на конец января.

Потом будем рассуждать последовательно, обозначив для удобства первоначальную цену S. В конце января она стала равна 1,3S, а в конце февраля – 1,2 * (1,3S) = 1,56S. Следовательно, она выросла на 56%.

Решение можно  записать так:

Пусть S – первоначальная цена.

1)1,3S – цена в конце января (130% от S).

2)1,2 * (1,3S) = 1,56S – цена в конце февраля (120% от 1,3S).

3)1,56S составляет 156% от S.

    156% - 100% = 56%

Ответ: за 2 месяца цена выросла на 56%.

Проценты  в банковской системе.

Простой процентный рост.

Если человек не вносит своевременную плату за квартиру, то на него налагается штраф, который называется «пеня». Так в Москве пеня составляет 1% от суммы квартплаты за каждый день просрочки. Поэтому, например, за 19 дней просрочки, сумма составит 19% от суммы квартплаты, и в месте , скажем, со 100 руб. квартплаты человек должен будет внести пеню 0,19 * 100 = 19 руб., а всего 119 руб.

Ясно, что  в разных городах и у разных людей, квартплата, размер пани и время  просрочки разные. Поэтому имеет  смысл, составить общую формулу квартплаты для неаккуратных плательщиков, применимую при любых обстоятельствах.

Пусть S – ежемесячная кварт плата, пеня составляет p% квартплаты за каждый день просрочки, а n – число просроченных дней. Сумму, которую должен заплатить человек после n дней просрочки, обозначим Sn.

Тогда за n дней просрочки, пеня составит pn% от S , или , а всего придётся заплатить .Таким образом,

Задача 1. Сколько надо заплатить москвичу, если его квартплата составляет 100 руб. и просрочена на 5 дней?

Решение.

Подставляя  в формулу значение p = 1 и значения n = 5 * 4, получим:

(1 + ) * 100 = 1,05 * 100 = 105 (руб.)

Ответ: через 5 дней – 105 руб.

Таким образом, установленная формула позволяет быстро рассчитывать необходимые значения выплат за квартиру.

Рассмотрим  еще одну ситуацию. Банк выплачивает  вкладчикам  каждый месяц p% от внесенной суммы. Поэтому, если клиент внес сумму S, то через n месяцев на его счете будет ( )S, и мы вновь получаем, что

Sn=(1+ ) S

Мы получили в точности ту же самую формулу, что и в примере с квартплатой, хотя буквы в этих двух примерах имеют разный смысл: в первом примере n – число дней, а во втором примере n - число месяцев, в первом примере S – величина квартплаты, а во втором S – сумма, внесенная в банк. Такая же формула будет получаться и во всех иных случаях, когда некоторая величина увеличивается на постоянное число процентов за каждый фиксированный период времени. Эта формула описывает многие конкретные ситуации и имеет специальное название: формула простого процентного роста.

Задача 2. Банк выплачивает вкладчикам каждый месяц 2% от внесённой суммы. Клиент сделал вклад в размере 500 рублей. Какая сумма будет на его счёте через полгода?

Решение.

Для решения  задачи достаточно подставить в формулу  величину процентной ставки p = 2, числа месяцев n = 6  и первоначального вклада S = 500:

(1 + ) * 500 = 1,12 * 500 = 560 (руб.)

Ответ: через полгода на вкладе будет 560 руб.

Сложный процентный рост.

В Сберегательном банке России для некоторых видов  вкладов принята следующая система  начисления денег. За  первый год  нахождения внесенной суммы на счете  начисляется 40% от нее. В конце года вкладчик может снять со счета эти деньги – «проценты», как их обычно называют.

Если  же он этого не сделал, то они присоединяются к начальному вкладу, и поэтому  в конце следующего года 40% начисляются  банком уже на новую, увеличенную  сумму. Иначе говоря, при такой системе начисляются банком уже на новую, увеличенную сумму. Иначе говоря, при такой системе начисляются «проценты на проценты», или, как их обычно называют, сложные проценты.

Подсчитаем, сколько денег получит вкладчик через 3 года, если он положил на срочный счет в банк1000 руб. и ни разу не будет брать деньги со счета:

40% от 1000 руб. составляют 0,4 * 1000 = 400 руб., и  следовательно, через год на  его счете будет

1000 + 400 = 1400 (руб.)

40% от  новой суммы 1400 руб. составляют 0,4 * 1400 = 560 руб., и следовательно, через 2 года на его счете будет

1400 + 560 = 1960 (руб.)

40% от  новой суммы 1960 руб. составляют 0,4 * 1960 = 784 руб., и следовательно, через  3 года на его счете будет

1960 + 784 = 2744 (руб.)

Нетрудно  представить себе, сколько при  таком непосредственном , «лобовом» подсчёте понадобилось бы времени для нахождения суммы вклада через 10 лет. Между тем, подсчёт можно вести значительно проще.

Именно  через год начальная сумма  увеличится на 40%, то есть составит 140% от начальной, или, другими словами, увеличится в 1,4 раза. В следующем году  новая, уже увеличенная сумма тоже увеличится  на те же 40%. Следовательно, через 2 года начальная сумма увеличится в 1,4 * 1,4 = 1,42 раза.

Еще через  один год и эта сумма увеличится в 1,4 раза, так что начальная сумма увеличится в 1,4 * 1,42 = 1,43 раза. При таком способе рассуждения получаем решение нашей задачи значительно более простое:

1,43 * 1000 = 2,744 * 1000 = 2744 (руб.)

Решим теперь эту задачу в общем виде. Пусть банк начисляет  p%  годовых, внесённая сумма равна  S рублей, а сумма, которая будет на счёте через n лет, равна Sn рублей.

p% от S  составляют  S  рублей, и через год на счёте окажется сумма

S1 = S

то есть  начальная сумма увеличится в 1 + раза.

За  следующий год сумма  S1 увеличится во столько же раз,  и поэтому через два года на счёте будет сумма

S2 = (1 + ) S1 = (1 + ) (1+ ) S =(1 + )2 S.

Аналогично, S3  =(1 + )3 S  и так далее.  Другими словами, справедливо равенство

Sn = (1 + ) 3 S.

Эту формулу  называют формулой сложного процентного роста, или просто формулой сложных процентов.

Задача 1. Какая сумма будет на срочном счёте вкладчика через 4 года, если банк начисляет 10% годовых и внесённая сумма равна 2 000 рублей?

Решение.

Подставим в формулу значения процентной ставки  p = 10, количество лет n = 4 и величину первоначального вклада  S  = 2000, получим:

(1 + )4 * 2000 = 1,14 * 2000 = 1,4641 * 2000 = 2928,2 (рублей).

Ответ: через 4 года на счёте будет сумма 2928,2 рубля.

Банковский  процент.

Предположим, что вы хотите положить в банк 10 000 рублей, чтобы на них  «росли проценты». В Сбербанке вам предложат 120% годовых, если вы кладёте деньги на 3 месяца, 130% годовых, если положите на 6 месяцев, и 150% годовых при вкладе на год.

В банке  «Триумф» вам предложат 200% годовых  при вкладе на год. Подсчитаем, сколько вы получите через 5 лет. Поскольку каждый год вы будете получать 200% годовых, то за 5 лет вы получите в 5 раз больше – 1000%, т.е. 100 000 рублей к своим 10 тысячам рублей. Но это не так!

Считать следует иначе! За год ваш вклад  утраивается, т.е. через год у вас будет 30  тысяч рублей, а  за второй год он еще утроится и составит 90 000 рублей. То же самое буде происходить после третьего, четвёртого и пятого года. Поэтому после третьего года у вас будет уже 270 000 рублей, после четвёртого 810 000 рублей, а после пятого – 2 430 000 рублей, а не 110 000 рублей, как мы предполагали сначала. Теперь стоит выбрать способ вложения денег: на 3 месяца, на 5 месяцев или на год.

Казалось  бы, лучше всего положить на год, что даёт самый высокий процент  годовых – 150%. Но, наученные расчётами с другими банками, давайте проверим.

Если  положить на полгода из расчёта 130% годовых, то через полгода получим доход  в 65% от вложенной суммы, т.е. сумма  увеличится  в 1,65 раз. Если затем  еще раз положить на полгода все  полученные деньги, то сумма возрастёт в 1,65 * 1,65 = 2,7225 раза, то есть на 172,25%, что существенно больше 150-ти процентов при вкладе сразу на год.

А если положить деньги на три месяца, потом  еще на три, и еще, и еще раз  на три месяца? В первый раз прибыль  составит четверть от 120%, т.е. 30% от вложенной суммы. Это значит, что вклад увеличится в 1,3 раза. В следующий месяц он увеличится еще в 1,3 раза, что даст увеличение первоначальной суммы в 1,69 раза. Через следующие три месяца увеличение составит 2,197 раза, а к концу года  получим увеличение в 2,8561 раза. Таким образом, получаем 185,61% годовых. Правда, при этом нужно приходить в банк каждые три месяца, чтобы забирать вклад и снова класть его на три месяца.

Но есть ещё форма вклада под 100% годовых  с правом снять вклад в любое время с получением  соответствующей доли прибыли. Вот, наверное, золотая жила!  Ведь мы убедились, что чем чаще кладёшь и берёшь вклад, тем больше оказывается прибыль.

Если  ходить в Сбербанк каждый день, то каждый раз вклад будет увеличиваться в 1+ , а за год увеличение составит (1 + )365 раза.

Величина  числа (1 + )n  действительно увеличивается с увеличением n, но не может превзойти числа е= 2,71828… и стремится к этому числу с увеличением n.

Число е названо так в честь Леонардо Эйлера. Оно играет важную роль во многих разделах математики.

Итак, даже бегая в Сбербанк каждый час, нам  не удастся получить доход больше 172% годовых, если мы примем эту форму  вложения денег. 

Ипотеки.

Ипотека — это заем, который предоставляет  нам банковское учреждение для того, чтобы мы могли оплатить стоимость жилья. Когда банк одалживает нам деньги, мы должны вернуть ему эту сумму плюс соответствующие проценты. Возвращение ипотечного кредита осуществляется не в конце договорного срока, а ежегодными частями. Например, Эдуард купил себе квартиру, но так как у него не было для этого достаточно денег, он обратился в банк за ипотечным кредитом в один миллион рублей со сроком погашения 20 лет. Тип годового процента является фиксированным: 4%. Какую сумму должен возвращать Эдуард банку ежегодно?                                                                             Возвращаемая сумма называется годовым погашением и рассчитывается следующим образом:

Информация о работе Задачи на "Проценты"