Обработка порошковых материалов давлением

Автор работы: Пользователь скрыл имя, 09 Апреля 2012 в 15:50, реферат

Краткое описание

Основным стимулом зарождения и развития ПМ до сих пор являлась потребность в новых материалах, невозможность их получения и обработки с помощью традиционных методов. Основы современной ПМ были заложены П. Г. Соболевским в 1826-1827гг.в связи с необходимостью переработки порошка платины и отсутствием возможности его переплавки. В НГТУ на базе работ, проводимых с середины 60-х гг. была начата разработка нового направления в порошковой металлургии-горячей обработки давлением пористых порошковых заготовок, существенно расширившей возможности этой прогрессивной области науки и техники. Созданный в университете научный задел и материально-техническая база, наличие высококвалифицированных кадров, высокая эффективность выполненных работ и широкие перспективы дальнейшего развития послужили открытием в 1972г. в его составе проблемной научно-исследовательской лаборатории динамического горячего прессования, долгие годы являвшейся в стране ведущей координирующей организацией в области динамического горячего прессования. Учитывая интенсивное развитие порошковой металлургии в Ростовской области и на Северном Кавказе, при кафедре материаловедения и технологии материалов была открыта специальность '' Композиционные и порошковые материалы, покрытия''. Кафедра явилась базовой при организации в НГТУ диссертационного совета.

Содержимое работы - 1 файл

Общая характеристика порошковой металлургии.doc

— 82.50 Кб (Скачать файл)


МИНЕСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ

Запорожская Государственная Инженерная Академия

 

 

 

 

 

 

 

 

 

 

РЕФЕРАТ

 

 

 

Обработка порошковых материалов давлением

 

 

 

 

 

Выполнил :                                                ст. гр. МЕТ-08-2з

                                                                               Богдан С.А.

 

 

Проверил :                                                                   доцент

                                                                                 Жагров А.С.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ЗАПОРОЖЬЕ 2011г.

Общая характеристика порошковой металлургии и свойства порошков.

                                                                                                  

          Основным стимулом зарождения и развития ПМ до сих пор являлась потребность в новых материалах, невозможность их получения и обработки с помощью традиционных методов. Основы современной ПМ были заложены П. Г. Соболевским в 1826-1827гг.в связи с необходимостью переработки порошка платины и отсутствием возможности его переплавки. В НГТУ на базе работ, проводимых с середины 60-х гг. была начата разработка нового направления в порошковой металлургии-горячей обработки давлением пористых порошковых заготовок, существенно расширившей возможности этой прогрессивной области науки и техники. Созданный в университете научный задел и материально-техническая база, наличие высококвалифицированных кадров, высокая эффективность выполненных работ и широкие перспективы дальнейшего развития послужили открытием в 1972г. в его           составе проблемной научно-исследовательской  лаборатории динамического горячего прессования, долгие годы являвшейся в стране ведущей  координирующей организацией в области динамического горячего прессования. Учитывая интенсивное развитие порошковой металлургии в Ростовской области и на Северном Кавказе, при кафедре материаловедения и технологии материалов была открыта специальность '' Композиционные и порошковые материалы, покрытия''. Кафедра явилась базовой при организации в НГТУ диссертационного совета.  

       Основные области применения ПМ. Порошковые материалы используются практически в любой области техники, и объем их применения непрерывно расширяется. Это связано как с возрастающей ролью, которую выполняют материалы вообще, так и со специфическими  особенностями, присущими только порошковым материалам. Так, развитие электронной техники было бы невозможно без развития производства полупроводников, то же можно сказать в отношении космической техники, ядерной энергетики.

  Спеченные антифрикционные материалы позволили повысить надежность и долговечность узлов трения, снизить потери на трение, заменить дорогостоящие подшипники качения, на подшипники скольжения или баббиты и брынзы на железографитовые псевдосплавы. Разработка материалов твердыми смазками сделала возможным их применение в устройствах, где использование жидких смазок вообще не допустимо, например в пищевой промышленности, при высоких температурах.

   Пористые порошковые материалы широко используются в узлах трения, фильтрах, тепловых трубах, уплотнениях.

Фрикционные порошковые материалы являются,  по существу, композиционными и состоят из металлических и неметаллических компонентов. Они имеют наиболее высокие фрикционные свойства и широко применяются.

Электротехнические материалы – контакты, магнитомягкие и магнитотвердые материалы, инструменты для электроэрозионной обработки, точечной и роликовой сварки – находят все более широкое применение в электротехнике, энерго – и аппаратостроении, автоматике и телемеханике, радиоэлектронике и других отраслях.

 Порошковые конструкционные материалы  являются наиболее распространенной продукцией ПМ. Потребность в них составляет около 60% суммарной потребности в продукции ПМ.  

Жаропрочные, жаростойкие и композиционные материалы определяют развитие отраслей современной техники, где без обеспечения специальных свойств  невозможна эксплуатация машин и агрегатов: авиационной, ракетной техники, космонавтики, химического машиностроения. Для их нужд были созданы тугоплавкие металлы и сплавы, тугоплавкие соединения, получаемые в большинстве случаев только методами ПМ.

    Тугоплавкие и твердые бескислородные соединения  и материалы на их основе-карбиды, бориды, нитриды, силициды и другие - находят применение благодаря своим уникальным свойствам во многих отраслях  промышленности, например инструментальной.

    Твердые сплавы -  важнейшие широко распространенные порошковые материалы, при получении которых в полной мере реализуются возможности ПМ : получение композиционных материалов из компонентов с резко различной температурой плавления, достижение уникального комплекса физико – механических свойств, безотходная технология. Применяются твердые сплавы в инструментальной промышленности, буровой технике, при обработке давлением.

 Материалы для современной атомной энергетике должны выдерживать экстримальные механические и термические нагрузки с одновременным воздействием физических факторов, они используются в качестве поглощающих и замедляющих элементов, а так же топлива. Определенную их часть составляют порошковые материалы.

   Эрозионностойкие  материалы  должны сочетать разнообразные и необычные свойства изделий и обеспечивать их работоспособность в очень тяжелых  условиях эксплуатации. Примером могут служить турбины, где наиболее напряженной деталью является сопловой вкладыш, рабочая температура на поверхности составляет 3500-3600°С.

     . С увеличением связности частиц увеличиваются затраты на формирование изделий, но уменьшается вероятность взаимодействий материала с внешней средой и затраты на его защиту. Порошок, являющийся исходным материалом для ПМ, в этом отношении занимает промежуточное положение между жидкостью твердым телом , обладая савокупностью частиц текучестью, а в объеме каждой частицы – деформируемостью.

Металлическим порошком - называется совокупность частиц металла, сплава или металлоподобного соединения размерами до миллиметра, находящихся в контакте и не связанных между собой. Лигатурами - называются вспомогательные сплавы, применяемые для жидкотекучести . Частица представляет собой индивидуальное тело с небольшими размерами во всех трех измерениях. В большинстве случаев размеры частиц, используемых в ПМ, составляют 10-100  мкм. В связи с этим они имеют развитую поверхность, во многом определяющую их поведении при дальнейшей обработки и отличающую ее от обычных материалов даже идентичного состава. Второй главной особенностью частицы является значительно большее содержание (относительное) в ней  объемных дефектов – пор и включений.

       Физика и химия поверхности порошков. Поверхность твердого тела является зоной, где межатомные связи не скомпенсированы. Сорбция – поглощение вещества из окружающей среды твердыми или жидкими телами. Поглотитель называют сорбентом, поглощаемое вещество – сорбатом. Абсорбция –поглощение сорбата  всем объемом сорбента. Адсорбцыя – поглощение сорбата поверхностью сорбента.Хемосорбцыя – поглощение сорбента с образованием химических соединений, сопровождающееся тепловым эффектом. Состояние поверхности раздела между фазами  А и В или даже между частицами одной фазы можно охарактеризовать поверхностным натяжением. ПАВ – это вещества, способные адсорбироваться на поверхностях раздела фаз и понижать величины.

 Поверхностное натяжение характеризует работу перехода атомов из внутренней части материала на поверхность при образовании единицы новой поверхности.

 Поверхностная энергия-избыток энергии поверхностного слоя на границе двух соприкасающихся фаз, определяемый различным характером межчастичного взаимодействия в обеих фазах. При высокой температуре и повышенной  диффузионной  подвижности атомов площадь поверхности может сохраниться, но если ее геометрическая форма была неправильна или нарушена, то она изменяется. Увеличение поверхности раздела при измельчении частиц связано с энергетическими затратами, а ее уменьшение энергетически целесообразно и может являться стимулом для протекания определенных процессов, например при спекании или при температурном нагреве.   

        Микроструктура поверхности. Идеализированные поверхности можно разделить на три типа: сингулярные, вицинальные и диффузионные. Сингулярные поверхности раздела фаз отличаются от диффузионных  количеством атомных молекулярных слоев, параллельных поверхности кристалла, в которых осуществляется переход от кристалла к пару. Реальные поверхности содержат так называемые поверхностные дефекты, то есть такие нарушения в идеальном расположении атомов, которые имеют большую протяженность в двух направлениях  и незначительную - в третьем.

        Объемные дефекты частиц порошков. Наряду с точечными линейными и поверхностными, присуще структуре литых металлов. Они имеют размеры одного порядка в трех измерениях и несколько порядков превышают размеры точечных дефектов. К этому виду дефектов литых металлов относятся субмикропоры, являющиеся результатом изотропного роста скоплений вакансий, субмикропузыри, сегрегации и так далее. С уменьшением размеров тел (частиц) влияние этих факторов возрастает, одновременно увеличивается интенсивность взаимодействия с окружающей средой, приводящая к повышению газонасыщенности и окисленности металла. Все это вызывает увеличение количества объемных дефектов в порошковых частицах по сравнению с литыми и обработанными давлением металлами. Неметаллические включения- это преимущественно оксиды основного (железа) и примесных элементов.Поры в исходных частицах могут быть только внутренние, они мелкие, возникают при получении порошка за счет усадки, газообразования, механического воздействия(трещины) и др.

Химические свойства порошков. К химическим свойствам металлических порошков относятся их химический состав, газонасыщенность, пирофорность, токсичность, взрывоопасность. Химический состав оценивают содержанием основных компонентов, примесей или загрязнений и газов. Зависит он от состава исходных материалов и метода получения порошков. Предельное содержание примесей в порошках определяется их допустимым количеством в готовой продукции. Химический анализ по методикам, принятым для общего анализа металлов. Исключением является лишь определение содержания кислорода. Газонасыщенность­­- характерная особенность порошков. Содержатся газы на поверхности частиц (адсорбированные) и внутри их, попадая в процессе изготовления и при разложении добавок.Ухудшаются условия прессования (хрупкость) и спекания (коробления).  

       Физические свойства. К физическим свойствам порошков относятся: форма частиц, их размер, удельная поверхность, плотность, микротвердость. Фракция это совокупность частиц в определенном диапазоне размеров. Гранулометрический состав- содержание фракций частиц (%) по отношению к общему количеству. Гранулометрический состав определяют ситовым, седиментационным, микроскопическим и другими методами. Ситовый анализ проводят механическим разделением навески порошка 100г при насыпной плотности более  1,5 г/см³  и 50г при меньшем значении через требуемый набор сит, располагаемых одно над другим. Порошок перед рассевом просушивают.

Частицы имеют неправильную геометрическую форму, их взаимоориентировка случайна, поэтому  размер для расчета определяют в одном каким- либо направлении, независимо от их расположения. Удельная поверхность представляет собой суммарную поверхность всех частиц, составляющих единицу их массы или объема. Плотность частицы порошка-отношение ее массы к занимаемому объему. Микротвердость позволяет косвенно оценить способность частиц порошка к деформированию, что нельзя сделать, как для обычных материалов, по механическим свойствам, поскольку последние не определяются для дискретных тел.

       Адсорбционные методы делятся на статические и динамические. Во первых измерения производят по достижении равновесия газ - твердое тело, во - вторых                 при непрерывном течении газа. Метод ртутной порометрии  обычно используется                             для измерения Ѕw  когда ртуть не смачивает исследуемый порошок. Сущность метода заключается во вдавливании ртути в поры при определенном давлении,  

       Технологические свойства. Это угол естественного откоса, насыпную плотность, плотность утряски, текучесть, уплотняемость, прессуемость и формируемость. Формируемость порошка в основном зависит от формы, размера и состояния поверхности частиц. Аутогезия зависит от природы частиц, их размеров, состояния поверхности, параметров среды, в которой они находятся. Угол естественного откоса α образуется поверхностью конуса свободно насыпанного порошка и горизонтальной плоскостью в его основании. Таким образом, угол естественного откоса α является также и углом трения. Насыпной объем – величина, обратная насыпной плотности. Плотность утряски γутр  - это отношение порошка к объему после утряски его по определенной программе.                           Текучесть порошка, то есть его способность перемещаться под действием силы тяжести, оценивается временем истечения ( τ‚с ) навески 50г через калиброванное отверстие диаметром 2,5 мм. Уплотняемость порошков показывает их способность к уменьшению занимаемого объема под воздействием давления или вибрации. Прессуемость порошка оценивают его способностью образовывать под давлением тело, имеющее заданные размеры, форму и плотность. Формуемость порошка оценивают его способностью сохранять приданную форму в заданном интервале значений пористости. Формуемость порошка в основном зависит от формы, размера и состояния поверхности частиц. Эффекты, возникающие при действии периодических сил на дисперсную среду, можно объединить в следующие группы:

Информация о работе Обработка порошковых материалов давлением