Структурные уровни организации материи

Автор работы: Пользователь скрыл имя, 01 Ноября 2011 в 21:50, контрольная работа

Краткое описание

Все объекты природы (живой и неживой природы) можно представить в виде системы, обладающей особенностями, характеризующей их уровни организации. Концепция структурных уровней живой материи включает представления системности и связанной с ней организацией целостности живых организмов. Живая материя дискретна, т.е. делится на составные части более низкой организации, имеющие определенные функции.

Содержание работы

Введение…………………………………………………………….……………..2
1. Роль системных представлений в анализе структурных уровней организации материи……………….……………………………………2
2. Структурные уровни живого……………………………………………..6
3. Сущность макромира, микромира и мегамира………………………….7
Микромир…………………………………………………..……………..8
Макромир…………………………………………………..……………11
Мегамир…………………………………………………………………12
4. Анализ классического и современного понимания концепции макромира…………………………………………………………….…13
Заключение………………………………………………………….…………..17

Содержимое работы - 1 файл

Контрольная по КСЕ.docx

— 85.28 Кб (Скачать файл)

   Все объекты, которые исследует наука, относятся к трем «мирам» (микромир, макромир и мегамир), которые и представляют собой уровни организации материи.                                                                                                            

Микромир.

     Приставка «микро» означает отношение к  очень малым размерам. Таким образом, можно сказать, что микромир – это что-то небольшое.

Микромир  – это молекулы, атомы, элементарные частицы — мир предельно малых, непосредственно не наблюдаемых  микрообъектов, пространственная размерность  которых исчисляется от 10-8 до 10-16 см, а время жизни — от бесконечности до 10-24 секунд. 
 В философии в качестве микромира изучается человек, а в физике, концепции современного естествознания в качестве микромира изучаются молекулы.

Микромир имеет свои особенности, которые можно выразить так:

1) единицы измерения расстояния (м, км и т. д.), используемые человеком, применять просто бессмысленно;

2) единицы измерения веса человека (г, кг, фунты и т. д.) применять также бессмысленно.

  Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII веке была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов.        

Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX веке  Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе. 
 В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX века, когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов.  
 История исследования строения атома началась в 1895 году  благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов.    

     Поскольку электроны имеют отрицательный  заряд, а атом в целом электрически нейтрален, то было сделано предположение  о наличии помимо электрона и  положительно заряженной частицы. Масса  электрона составила по расчетам 1/1836 массы положительно заряженной частицы. 
 Существовало несколько моделей строения атома. 
 В 1902 году  английский физик У. Томсон (лорд Кельвин) предложил первую модель атома — положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».  
           В 1911 году  Э. Резерфорд предложил модель атома, которая напоминала солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны. 
 Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы.       Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов — атом электрически нейтрален.

Обе эти  модели оказались противоречивы. 
          В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров. 
 Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой: 
1) в каждом атоме существует несколько стационарных состояний. 
2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

     В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.

     Теория  Н. Бора представляет собой как бы пограничную полосу первого этапа  развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.  
Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Макромир.

     Естественно, есть объекты, которые по своим размерам гораздо больше объектов микромира. Эти объекты и составляют макромир. Макромир «населяют» только те объекты, которые по своим размерам соизмеримы с размерами человека. К объектам макромира можно отнести и  самого человека

     Макромир имеет  довольно сложную организацию. Его  самый маленький элемент –  атом, а самая большая система  – планета Земля. В его состав входят как неживые системы, так  и живые системы различного уровня. Каждый уровень организации макромира  содержит как микроструктуры, так  и макроструктуры. Например, молекулы вроде бы должны относится к микромиру, поскольку они нами непосредственно не наблюдаются.       Но, с одной стороны, самая большая структура микромира – атом. А у нас есть сейчас возможность видеть с помощью микроскопов последнего поколения даже часть атома водорода. С другой стороны, есть огромные молекулы, чрезвычайно сложные по своему строению, например, ДНК ядра может быть длинной почти в один сантиметр. Подобная величина уже вполне сопоставима с нашим опытом, и если бы молекула была толще, мы бы ее увидели невооруженным глазом.

     Все вещества, находящиеся в твердом  или жидком состоянии, состоят из молекул. Молекулы образуют и кристаллические решетки, и руды, и скалы, и другие объекты, т.е. то, что мы можем почувствовать, увидеть и т.д. Однако, несмотря на такие огромные образования, как горы и океаны, - это все молекулы, связанные между собой. Молекулы – новый уровень организации, они все состоят из атомов, которые в этих системах рассматриваются как неделимые, т.е. элементы системы.

     Как физический уровень организации  макромира, так и химический уровень  имеют дело с молекулами и различными состояниями вещества. Однако химический уровень значительно более сложный. Он не сводится к физическому, рассматривающему строение веществ, их физические свойства, движение (все это было исследовано в рамках классической физики) хотя бы по сложности химических процессов и реакционной способности веществ. 

     На  биологическом уровне организации  макромира, кроме молекул, мы обычно не можем без микроскопа разглядеть и клетки. Но ведь есть клетки, которые  достигают огромной величины, например аксоны нейронов осьминогов длинной  в один метр и даже больше. Вместе с тем все клетки имеют определенные сходные черты: они состоят из мембран, микротрубочек, у многих есть ядра и органеллы. Все мембраны и  органеллы в свою очередь состоят  из гигантских молекул (белков, липидов  и др.), а эти молекула состоят  из атомов. Поэтому как гигантские информационные молекулы (ДНК, РНК, ферменты), так и клетки – это микроуровни биологического уровня организации материи, включающего и такие огромные образования, как биоценозы и биосфера. 

Мегамир.

     Мегамир – это мир объектов, которые несоизмеримо больше человека.

Вся наша Вселенная – это мегамир. Ее размеры огромны, она безгранична и постоянно расширяется. Вселенную заполняют объекты, которые значительно больше нашей планеты Земля и нашего Солнца. Нередко бывает, что разница между какой-либо звездой за пределами Солнечной системы в десятки раз превосходит Землю.

     Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд, звезд и звездных систем — галактик; системы галактик — Метагалактики.

Исследование  мегамира тесно связано с космологией и космогонией.

     Космогония  – это раздел науки астрономии, который изучает происхождение  галактик, звезд, планет, а также  других объектов. На сегодня космогонию можно разделить на две части:

1) космогония Солнечной системы. Эту часть (или вид) космогонии по-другому называют планетной;

2) звездная космогония.

   И хотя на всех этих уровнях действуют  свои специфические закономерности, микромир, макромир и мегамир теснейшим образом взаимосвязаны. 

  1. Анализ  классического и  современного понимания  концепции макромира.

   В истории изучения природы можно  выделить два этапа: донаучный и  научный.                                    Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI-XVII веках. В этот период учения о природе носили чисто натурфилософский характер: наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

      Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи - атомизм, согласно которому все тела состоят из атомов -мельчайших в мире частиц.

      Исходными началами в атомизме выступали атомы и пустота. Сущность протекания природных процессов объяснялась на основе механического взаимодействия атомов, их притяжения и отталкивания.

      Поскольку современные научные представления о структурных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начинать исследование нужно с концепций классической физики.

     И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и  теми же законами. Природа рассматривалась как сложная механическая система. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

     Движение  рассматривалось как перемещение  в пространстве по непрерывным траекториям  в соответствии с законами механики. Считалось, что все физические процессы можно свести к перемещению материальных точек под действием силы тяготения, которая является дальнодействующей

     Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлении, которые не могли быть полностью объяснены в рамках механистической картины мира.

     Разрабатывая  оптику, И. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц – корпускул. В корпускулярной теории света И. Ньютона утверждалось, что светящиеся тела излучают мельчайшие частицы, которые движутся в согласии с законами механики и вызывают ощущение света, попадая в глаз. На базе этой теории И. Ньютоном было дано объяснение законам отражения и преломления света.

     Наряду  с механической корпускулярной теорией, осуществлялись попытки объяснить  оптические явления принципиально  иным путем, а именно - на основе волновой теории, сформулированной Х. Гюйгенсом. Главным аргументом в пользу своей  теории Х.Гюйгенс считал тот факт, что два луча света, пересекаясь, пронизывают друг друга без каких-либо помех в точности, как два ряда волн на воде.

     Согласно  же корпускулярной теории, между пучками  излученных частиц, каковыми является свет, возникали бы столкновения или, по крайней мере, какие-либо возмущения. Исходя из волновой теории Х. Гюйгенс успешно объяснил отражение и преломление света.

     Однако  против нее существовало одно важное возражение. Как известно, волны  обтекают препятствия. А луч света, распространяясь по прямой, обтекать препятствия не может. Если на пути луча света поместить непрозрачное тело с резкой гранью, то его тень будет иметь резкую границу. Однако это возражение вскоре было снято благодаря опытам Гримальди. При более тонком наблюдении с использованием увеличительных линз обнаруживалось, что на границах резких теней можно видеть слабые участки освещенности в форме перемежающихся светлых и темных полосок или ореолов. Это явление было названо дифракцией света.

     Волновая  теория света была вновь выдвинута  в первые десятилетия ХІХ века английским физиком Т. Юнгом и французским естествоиспытателем О. Ж. Френелем. Т. Юнг дал объяснение явлению интерференции, т.е. появлению темных полосок при наложении света на свет. Суть ее можно описать с помощью парадоксального утверждения: свет, добавленный к свету, не обязательно дает более сильный свет, но может давать более слабый и даже темноту. Причина этого заключается в том, что согласно волновой теории, свет представляет собой не поток материальных частиц, а колебания упругой среды, или волновое движение. При наложении друг на друга цепочек волн в противоположных фазах, где гребень одной волны совмещается с впадиной другой, они уничтожают друг друга, в результате  чего появляются темные полосы.

Информация о работе Структурные уровни организации материи