Дефекты кристаллических решеток

Автор работы: Пользователь скрыл имя, 22 Декабря 2011 в 16:12, реферат

Краткое описание

Дефекты: точечные, линейные, поверхностные, объёмные. Точечные: внедрение, вакансия, вызывают искажения. Линейные: дислокации, определяют высокую пластичность материала, эффект имеет длину. Поверхностные: границы зёрен, резко повышают пластичность и снижают прочность материала. Объёмные – порог в металле, дефекты имеют объём.
Из термодинамики Дефекты известно, что всякая система стремится к минимуму свободной энергии (F), где F является разностью между внутренней энергией системы U и связанной энергией системы ТS. F = U - TS

Содержимое работы - 1 файл

Дефекты кристаллических решеток.docx

— 1.12 Мб (Скачать файл)

Упрочнению способствуют и другие несовершенства кристаллического строения, также тормозящие движение дислокаций. К ним относятся атомы растворенных в металле примесей и легирующих элементов, частицы выделений второй фазы, границы зерен или блоков и т. д. На практике препятствие движению дислокаций, т. е. упрочнение, создается введением других элементов (легирование), наклепом, термической или термомеханической обработкой. Снижение температуры также препятствует свободному перемещению дислокаций. При низких температурах прочность растет, а пластичность падает. Металл становится более прочным, но хрупким.

Таким образом, повышение прочности металлов и  сплавов может быть достигнуто двумя  путями: 1) получением металлов с близким  к идеальному строением кристаллической  решетки, т. е. металлов, в которых  отсутствуют дефекты кристаллического строения или же их число крайне мало; 2) либо, наоборот, увеличением  числа структурных несовершенств, препятствующих движению дислокаций.      

 Дислокации  бывают двух видов.   

 Наиболее  характерной является краевая дислокация. Она образуется в результате возникновения в решетке так называемой полуплоскости или экстраплоскости.

 

 Нижний ряд  экстраплоскости собственно и принято называть дислокацией.   

 Другим типом  дислокации является винтовая дислокация, которая представляет собой некоторую условную ось внутри кристалла, вокруг которой закручены атомные плоскости

В винтовой дислокации, так же как в краевой, существенные искажения кристаллической решетки  наблюдаются только вблизи оси, поэтому  такой дефект может быть отнесен  к линейным.   

 Дислокации  обладают высокой подвижностью, поэтому существенно уменьшают  прочность металла, так как  облегчают образование сдвигов  в зернах-кристаллитах под действием  приложенных напряжений.   

 Дислокационный  механизм сдвиговой пластической деформации внутри кристаллов может привести к разрушению изделия. Таким образом, дислокации непосредственно влияют на прочностные характеристики металла.    

 Для оценки  этого влияния используется плотность  дислокаций, под которой принято  понимать отношение суммарной длины дислокаций к объему содержащего их металла. Плотности дислокаций измеряется в см-2 или м-2.    

В виде кривой ABC схематически показана зависимость прочности металла от плотности дислокаций. Точка А соответствует теоретической прочности металла, обусловленной необходимостью одновременного разрыва всех межатомных связей, проходящих через плоскость сдвига, в случае отсутствия дислокаций.    

  При увеличении  количества дислокаций (см. участок АВ) прочность резко снижается, так как на несколько порядков уменьшаются усилия, необходимые для осуществления сдвигов в зернах металла при его деформировании и разрушении. 
 
 
 

 

При плотности дислокаций 106-107 см-2 (точка В на кривой), прочности минимальна, и на участке ВС происходит ее рост. Это объясняется тем, что с ростом плотности дислокаций их передвижение происходит не только по параллельным, но и по пересекающимся плоскостям, что существенно затрудняет процесс деформирования зерен.

Поэтому начиная с точки В прочность металла возрастает.   

  Максимальная плотность  дислокаций, может  составить 1013 см-2. При дальнейшем росте плотности дислокаций происходит разрушение металла.   

 Поверхностные дефекты включают в себя главным образом границы зерен .На границах кристаллическая решетка сильно искажена. В них скапливаются перемещающиеся изнутри зерен дислокации.    

  Из практики известно, что мелкозернистый  металл прочнее  крупнозернистого. Так как у последнего меньше суммарная протяженность (площадь) границ. То можно сделать вывод, что поверхностные дефекты способствуют повышению прочности металла. Поэтому создано несколько технологических способов получения мелкозернистых сплавов. 

Поверхностные дефекты имеют малую толщину  и значительные размеры в двух других измерениях. Обычно это места  стыка двух ориентированных участков кристаллической решетки. Ими могут  быть границы зерен, границы фрагментов внутри зерна, границы блоков внутри фрагментов. Соседние зерна по своему кристаллическому строению имеют неодинаковую пространственную ориентировку решеток. Блоки повернуты друг по отношению к другу на угол от нескольких секунд до нескольких минут, их размер 10–5 см. Фрагменты имеют угол разориентировки не более 5°. Если угловая разориентировка решеток соседних зерен меньше 5°, то такие границы называются малоугловыми границами. Граница между зернами представляет собой узкую переходную зону шириной 5–10 атомных расстояний с нарушенным порядком расположения атомов. В граничной зоне кристаллическая решетка одного зерна переходит в решетку другого. Неупорядоченное строение переходного слоя усугубляется скоплением в этой зоне дислокаций и повышенной концентрацией примесей.

Плоскости и  направления скольжения в соседних зернах не совпадают. Скольжение первоначально  развивается в наиболее благоприятно ориентированных зернах. Разная ориентировка систем скольжения не позволяет дислокациям переходить в соседние зерна, и, достигнув границы зерен, они останавливаются. Напряжения от скопления дислокаций у границ одних зерен упруго распространяются через границы в соседние зерна, что приводит в действие источники образования новых дислокаций (источники Франка—Рида). Происходит передача деформации от одних зерен к другим, подобно передаче эстафеты в легкоатлетических соревнованиях.

Вследствие того, что границы зерен препятствуют перемещению дислокаций и являются местом повышенной концентрации примесей, они оказывают существенное влияние  на механические свойства металла.

Под размером зерна  принято понимать величину его среднего диаметра, выявляемого в поперечном сечении. Это определение условно, так как действительная форма зерна в металлах меняется в широких пределах — от нескольких микрометров до миллиметров. Размер зерна оценивается в баллах по специальной стандартизованной шкале и характеризуется числом зерен, приходящихся на 1 мм2 поверхности шлифа при увеличении в 100 раз.

Процесс пластического  течения, а, следовательно, и предел текучести зависят от длины свободного пробега дислокаций до «непрозрачного»  барьера, т. е. до границ зерен металла. Предел текучести sТ связан с размером зерна d уравнением Холла—Петча: sТ = sо + kd–1/2, где sо и k — постоянные для данного металла. Чем мельче зерно, тем выше предел текучести и прочность металла. Одновременно при измельчении зерна увеличиваются пластичность и вязкость металла. Последнее особенно важно для металлических изделий, работающих при низких температурах. Повышенные пластичность и вязкость обусловлены более однородным составом и строением мелкозернистого металла, отсутствием в нем крупных скоплений, структурных несовершенств, способствующих образованию трещин.

Рост зерен  аустенита эффективно затрудняет дисперсные частицы второй фазы — карбидов, нитридов, неметаллических включений. Частицы нитрида AlN, содержащиеся в спокойных сталях, раскисленных алюминием, препятствуют росту аустенитных зерен.

В легированных сталях рост зерен аустенита тормозится карбидами и карбонитридами легирующих элементов V, Ti, Nb, микродобавки которых в количестве около 0,1 % специально вводят в стали с целью сохранения мелкого зерна аустенита вплоть до 1000 °С. Использование этих элементов одновременно обеспечивает мелкозернистую структуру и снижение критической температуры хрупкости.  
Помимо перечисленных дефектов в металле имеются макродефекты объемного характера: поры, газовые пузыри, неметаллические включения, микротрещины и т. д. Эти дефекты снижают прочность металла.
 

Объемные  дефекты кристаллической решетки включают трещины и поры. Наличие данных дефектов, уменьшая плотность металла, снижает его прочность.   

 Кроме того, трещины являются сильными концентраторами напряжений, в десятки и более раз повышающими напряжения создаваемые в металле рабочими нагрузками. Последнее обстоятельство наиболее существенно влияет на прочность металла.

Информация о работе Дефекты кристаллических решеток