Ответы по физике (раздел "Оптика")

Автор работы: Пользователь скрыл имя, 18 Января 2011 в 06:32, шпаргалка

Краткое описание

Ответы на 25 вопросов.

Содержимое работы - 1 файл

optics.doc

— 1.53 Мб (Скачать файл)
  1. r(®r)
  2. Т(®r)

Эффект  Тиндаля объяснил теоретически Рэлей  и сформулировал следующий закон (закон Рэлея): интенсивность рассеянного  света обратно пропорционально l4 : I~l4. 

20. Кванты света. Энергия, импульс фотона. Корпускулярно-волновой дуализм свойств ЭМ излучения.

К объяснению свойств света существует 2 подхода: 1) корпускулярный; 2) волновой.

  1. Гипотеза Планка.

Излучение и поглощение света происходит дискретно, т.е. определенными порциями (квантами), энергия которых определяется частотой Е=hn  (h - постоянная Планка = 6,63*10-34Дж*с).

2. Эйнштейн  создал квантовую теорию света,  согласно которой излучение и  поглощение, а также распространение  света происходит в виде потоков  световых квантов, которые он назвал фотонами. Процесс взаимодействия света с веществом - это взаимодействие кванта (фотона) с веществом.

Фотон обладает массой m, импульс p=m*c=hn/c=h/l .

3. E=m*c2 - энергия фотона.

Фотоны всегда движутся в любой среде со скоростью света. Не существует в состоянии покоя, т.е. их масса покоя равна нулю.

Корпускулярно-волновой дуализм свойств ЭМ излучения. Это  означает, что природу света можно  рассматривать с двух сторон: с  одной стороны это волна, свойства которой проявляются в закономерностях распространения света, интерференции, дифракции, поляризации. С другой стороны свет - это поток частиц, обладающие энергией, импульсом. Корпускулярные свойства света проявляются в процессах взаимодействия света с веществом (фотоэффект, эффект Комптона).

 Анализируя можно понять, что чем больше длина волны l, тем меньше энергия (из  Е= hс/l), тем меньше импульс, тем труднее обнаруживаются квантовые свойства света.

Чем меньше l => больше энергия Е фотона, тем труднее обнаруживаются волновые свойства света.

Взаимосвязь между двойственными корпускулярно-волновыми  свойствами света можно объяснить, если использовать статистический подход к рассмотрению закономерностей распределения света.

Например, дифракция  света на щели: при прохождении  света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотона в различные точки экрана неодинаковая, то возникает дифракционная картина. Освещенность экрана (количество фотонов на него падающих) пропорциональна вероятности попадания фотона в эту точку. С другой стороны освещенность экрана пропорциональна квадрату амплитуды волны I~E2 . Поэтому квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотона в эту точку пространства. 

21. Фотоэффект, его виды и законы. Вольт-амперная характеристика фотоэффекта. Опыты Столетова. Уравнение Эйнштейна.

Фотоэффект - это явление вырывания электронов с поверхности металла под действием электромагнитного излучения. Такой эффект называется внешним эффектом. Еще встречается внутренний фотоэффект - это вызванные электромагнитным излучением переходы электронов внутри полупроводников или диэлектриков из связанных состояний в свободные без вылета наружу.

Рис.

Впервые законы были установлены Столетовым.

Облучая катод светом, были установлены следующие  закономерности: 1) наиболее эффективное действие оказывает ультрафиолетовое излучение; 2) под действием света вещество теряет только отрицательные заряды; 3) сила тока, возникающего под действием света прямо пропорционально его интенсивности.

Томпсон измерил удельный заряд испускаемых  частиц под действием света и  установил, что испускаются электроны. Во всех экспериментах были сняты  следующие зависимости:

Максимальное  значение тока Iнас называется фототоком насыщения. Определяется таким значением напряжения, при котором все электроны достигают анода. При U=0 фототок не исчезает. Это означает, что электроны, выбитые из катода, обладают некоторой скоростью (или кинетической энергией). Для того, чтобы фототок стал равным нулю необходимо приложить задерживающее напряжение =Uзад.

Три закона Столетова (для внешнего фотоэффекта):

1. При  фиксированной частоте падающего  света число фотоэлектронов в единицу времени вырываемых из катода прямо пропорционально интенсивности света.

2. Для  каждого вещества существует  красная граница фотоэффекта, ниже которой фотоэффект не наблюдается nкр (зависит от свойств вещества).

3. Максимальная  начальная скорость фотоэлектронов  не зависит от интенсивности  света, а зависит только от  частоты падающего излучения (т.е. mv2max/2(n)).

Эйнштейн  вывел следующее уравнение:

hn=Aвыхкин , где Aвых=hnкр, Екин= mv2max/2.

ìmv2max/2=hn- Aвых

í

îAвнеш=eU0

Один  фотон может быть выбит только одним электроном. Возможен многофотонный  нелинейный фотоэффект, при котором один электрон получает энергию у n фотонов и n может быть от 2 до 7 (наблюдается только для лазерного излучения). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

16. Поляризация света.  Поляризованный свет. Плоскополяризованный  свет. Линейная и  круговая поляризация  света. Закон Брюстера.

Поляризация света – физ. характеристика оптич. излуч-я, описыв-ая попереч-ю анизотропию  световых волн, т.е. неэквивалентность  различных направлений в плоскости  перпенд. напр-ю распр-ия волны (~k).

Световые  волны, у которых напр-е колебаний векторов ~E и ~H сохр-ся неизменными в простр-ве или измен-ся по опред-му закону наз-ся поляризованными.

Если ~E световой волны клебл-ся лишь в одной неизмен-й в простр-ве пл-ти, то такая волна наз-ся линейной или плоскополяризованной. Данная пл-ть, в кот-й лежат ~E и ~k наз-ся пл-ю поляризации волны. Если колеб-я ~k соверш-ся так, что его конец описывает окружность в пл-ти перпенд-й ~k, то такая волна наз-ся поляриз-й по кругу, если эллипс – эллиптически поляризованной. Световая волна, в которой различные напр-ия ~E в пл-ти перп. ~k равновероятны, наз-ся естественной или естественно полиризованной, либо неполяризованной.

Суперпозиция 2-х линейнополяриз-х волн.

1. Волны  ~E1 и ~E2 колебл-ся с одинак. частотой ω, направл. вдоль оси z, но ~E1Єxz, ~E2Єyz, Распр-ся со сдвигом фаз δ:

~E1: {E1x=E10*sin(ωt-kz); E1y=E1z=0}

~E2: {E2x=0; E2y=E20*sin(ωt-kz+δ); E2z=0}

~E=~E1+~E2={E1x+E2x;E1y+E2y:0}={Ex;Ey;0}

E2y=E20[sin(ωt-kz)cosδ+cos(ωt-kz)sinδ]

Ey=[E20/E10]Ex*cosδ+E20*sinδ*sqrt(1-(Ex/E10)2)

Ex2/E102+Ey2/E202-2[Ex/E10][Ey/E20]cosδ=sin2δ

Рассм. случаи:

1) cosδ=0 (δ=±π/2), sinδ=±1, Ex2/E102+Ey2/E202=1 – эллиптич. поляр. волна.

Если E10=E20=E0 => Ex2+Ey2=E02 – поляр. по кругу.

Если  при наблюдении навстречу волне  вращение ~E происходит по часовой стрелке, то такая волна наз-ся правополяризованной. Если против часовой – левополяризованной.

2) Если  cosδ≠0 волна остается эллиптич. поляриз-й, только оси эллипса не совпадают с осями x,y и повернуты на нек-й угол. Ориентация зависит от δ.

3) cosδ=±1 (δ+=0, δ_= π),

sinδ=0, Ex2/E102+Ey2/E202±2[Ex/E10][Ey/E20]=0, (Ex/E10±Ey/E20)2=0, Ex/E10=Ey/E20; Ey=[E20/E10]Ex; tgα=E20/E10

cosδ=1

cosδ=-1 

Конец ~E движется вдоль прямых линий. Получаем линейнополяриз. волну с разным углом поляризации. Очевидно, что световая волна с любой поляризацией м.б. представлена в виде суперпозиции 2-х линейнополяриз-х во взаимноперпендик-х пл-х волн. Поэтому э/м волна обладает двумя независимыми состояниями поляризации.

2. Рассм.  суперпоз-ю волн с левой и  правой поляр-ей.

E10=E20 – круговая.

~E1: система {E1x=E0*cosωt, E1y=E0*sinωt}

~E2: система {E2x=E0*cosωt, E2y=-E0*sinωt}

~E: система {Ex=E1x+E2x=2E0*cosωt, Ey=E1y+E2y=0}

~E – линейнополяр-я волна.

<f(t)>=(1/∆t) 0∆tfdt=(1/2)E02

<~E2(t)>=(1/2)E02 – средняя интенсивность волны. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

17. Распространение  света в веществе. Дисперсия света.  Нормальная и аномальная  дисперсия света. Классическая электронная теория дисперсии света. Различия в дифракционном и призматическом спектрах.

(Обозначения: ~x – вектор над x, x* или x** - две точки над x (над вектором))

Дисперсия света – зависимость фазовой  скорости света в среде от частоты. V=c/n(υ)=V(υ) – дисперсия.

На выходе: пучок разноцветных волн. Красные  лучи (большая λ) преломляются слабее, т.к. для красного цвета показатель преломления меньше, чем для фиолетового. Этот спектр на экране наз-ся призматическим.

Качественная  зависимость n от длины волны λ:

Такая зависимость наз-ся нормальной: dn/dλ<0 (dn/dυ>0).

Для аномальной дисперсии характерно обратное: dn/dλ>0 (dn/dυ<0).

Она наблюдается  вблизи линии поглощения вещества.

Количественная  характеристика дисперсии света  – физ. величина Dυ=dn/dυ или Dλ=dn/dλ и наз-ся дисперсией показателя преломления.

Спектры, получаемые с пом-ю призмы и с  пом-ю дифр-й решетки имеют  след. различия: 1. дифр. решетка разлагает  свет непосред-но по λ, а призма –  по значениям показателя преломления (n) (связь угла δ с …); 2. составные цвета в обоих спектрах располагаются по разному: кр. цвет дифр. решеткой отклоняется сильнее, призмой – слабее.

Классическая  электронная теория дисперсии света.

c2=1/(ε0μ0), n(υ)=c/V, V=c/sqrt(ε), n=sqrt(ε), ε – диэлектрическая проницаемость вещества.

Дисперсия света рассматривается как результат  взаимодействия э/м волны с заряженными  частицами вещ-ва, кот-е совершают  вынужденные колебания в переменном э/м поле волны. Электроны входящие в атом делятся на внешние (оптические) и внутренние.

Информация о работе Ответы по физике (раздел "Оптика")