Физиология мышечной системы

Автор работы: Пользователь скрыл имя, 11 Мая 2013 в 21:59, реферат

Краткое описание

Перемещение тела в пространстве, поддержание определенной позы, работа сердца и сосудов и пищеварительного тракта у человека и позвоночных животных осуществляются мышцами двух основных типов: поперечнополосатыми (скелетной, сердечной) и гладкими, которые отличаются друг от друга клеточной и тканевой организацией, иннервацией и в определенной степени механизмами функционирования. В то же время в молекулярных механизмах мышечного сокращения между этими типами мышц есть много общего.

Содержание работы

1. Классификация мышц
1.1. Классификация скелетных мышечных волокон
1.2. Функции и свойства скелетных мышц
1.3. Механизм мышечного сокращения
1.4. Режимы мышечного сокращения
1.5. Работа и мощность мышцы
1.6. Энергетика мышечного сокращения
1.7. Теплообразование при мышечном сокращении
1.8. Скелетно-мышечное взаимодействие
2. Основные свойства сердечной мышцы
3. Гладкие мышцы
3.1. Физиологические особенности гладких мышц

Содержимое работы - 1 файл

реферат.doc

— 145.00 Кб (Скачать файл)

Согласно закону средних нагрузок, мышца может  совершать максимальную работу при  нагрузках средней величины.

При сокращении скелетной мускулатуры в естественных условиях преимущественно в режиме изометрического сокращения, например при фиксированной позе, говорят о статической работе, при совершении движений — о динамической.

Сила сокращения и работа, совершаемая мышцей в  единицу времени (мощность), не остаются постоянными при статической и динамической работе. В результате продолжительной деятельности работоспособность скелетной мускулатуры понижается. Это явление называется утомлением. При этом снижается сила сокращений, увеличиваются латентный период сокращения и период расслабления.

Статический режим  работы более утомителен, чем динамический. Утомление изолированной скелетной  мышцы обусловлено прежде всего  тем, что в процессе совершения работы в мышечных волокнах накапливаются продукты процессов окисления — молочная и пировиноградная кислоты, которые снижают возможность генерирования потенциала действия. Кроме того, нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для энергообеспечения мышечного сокращения. В естественных условиях мышечное утомление при статической работе в основном определяется неадекватным регионарным кровотоком. Если сила сокращения в изометрическом режиме составляет более 15% от максимально возможной, то возникает кислородное «голодание» и мышечное утомление прогрессивно нарастает.

В реальных условиях необходимо учитывать состояние  ЦНС — снижение силы сокращений сопровождается уменьшением частоты  импульсации нейронов, обусловленное  как их прямым угнетением, так и  механизмами центрального торможения. Еще в 1903 г. И. М. Сеченов показал, что восстановление работоспособности утомленных мышц одной руки значительно ускоряется при совершении работы другой рукой в период отдыха первой. В отличие от простого отдыха такой отдых называют активным.

Работоспособность скелетной мускулатуры и скорость развития утомления зависят от уровня умственной деятельности: высокий уровень умственного напряжения уменьшает мышечную выносливость. 

 

1.6.           Энергетика мышечного сокращения

В динамическом режиме работоспособность мышцы определяется скоростью расщепления и ресинтеза АТФ. Мышца имеет три источника воспроизводства энергии: расщепление креатинфосфата; гликолиз; окисление органических веществ в митохондриях.

Креатинфосфат обладает способностью отсоединять фосфатную группу и превращаться в креатин, присоединяя фосфатную группу к АДФ, которая превращается в АТФ.

АДФ + креатинфосфат = АТФ + креатин.

Эта реакция  получила название - реакции Ломана. Запасы креатинфосфата в волокне  не велики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы, до момента активизации других более мощных источников - гликолиза и кислородного окисления. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.

Гликолиз - процесс  распада одной молекулы глюкозы (C6H12O6) на две молекулы молочной кислоты (C3H6O3) с выделением энергии, достаточной  для "зарядки" двух молекул АТФ, протекает в саркоплазме под  воздействием 10 специальных ферментов.

C6H12O6 + 2H3PO4 + 2АДФ = 2C3H6O3 + 2АТФ + 2H2O.

Гликолиз протекает  без потребления кислорода (такие  процессы называются анаэробными) и  способен быстро восстанавливать запасы АТФ в мышце. Во время этих процессов механическая работа, производимая мышцами больше, чем при аэробном окислении. Предельное время для такого рода работы составляет около 30 с, после чего возникает накопление молочной кислоты и развивается утомление.

Окисление протекает  в митохондриях под воздействием специальных ферментов и требует затрат кислорода, а соответственно и времени на его доставку. Такие процессы называются аэробными. Окисление происходит в несколько этапов, сначала идет гликолиз (см. выше), но образовавшиеся в ходе промежуточного этапа этой реакции две молекулы пирувата не преобразуются в молекулы молочной кислоты, а проникают в митохондрии, где окисляются в цикле Кребса до углекислого газа и воды и дают энергию для производства еще 36 молекул АТФ. Суммарное уравнение реакции окисления глюкозы выглядит так:

C6H12O6 + 6O2 + 38АДФ + 38H3PO4 = 6CO2 + 44H2О + 38АТФ.

Итого распад глюкозы  по аэробному пути дает энергию для  восстановления 38 молекул АТФ. То есть окисление в 19 раз эффективнее  гликолиза.  

 

1.7.  Теплообразование при мышечном сокращении

Согласно первому  закону термодинамики, общая энергия  системы и ее окружения должна оставаться постоянной.

Скелетная мышца  превращает химическую энергию в  механическую работу с выделением тепла. А. Хиллом было установлено, что все теплообразование можно разделить на несколько компонентов:

1.     Теплота активации — быстрое выделение тепла на ранних этапах мышечного сокращения, когда отсутствуют видимые признаки укорочения или развития напряжения. Теплообразование на этой стадии обусловлено выходом ионов Са2+  из триад и соединением их с тропонином.

2.     Теплота укорочения  —  выделение тепла  при  совершении работы, если речь идет не об изометрическом режиме. При этом, чем больше совершается механической работы, тем больше выделяется тепла.

3. Теплота расслабления — выделение тепла упругими элементами мышцы при расслаблении. При этом выделение тепла не связано непосредственно с процессами метаболизма.

Как отмечалось ранее, нагрузка определяет скорость укорочения. Оказалось, что при большой скорости укорочения количество выделяющегося тепла мало, а при малой скорости велико, так как количество выделяющегося тепла пропорционально нагрузке (закон Хилла для изотонического режима сокращения).  

 

1.8. Скелетно-мышечное  взаимодействие

При совершении работы развиваемое мышцей усилие передается на внешний объект с помощью сухожилий, прикрепленных к костям скелета. В любом случае нагрузка преодолевается за счет вращения одной части скелета относительно другой вокруг оси вращения.

Передача мышечного  сокращения на кости скелета происходит при участии сухожилий, которые обладают высокой эластичностью и растяжимостью. В случае сокращения мышцы происходит растяжение сухожилий и кинетическая энергия, развиваемая мышцей, переходит в потенциальную энергию растянутого сухожилия. Эта энергия используется при таких формах движения как ходьба, бег, т. е. когда происходит отрыв пятки от поверхности земли.

Скорость и  сила, с которой одна часть тела перемещается относительно другой, зависят  от длины рычага, т. е. взаимного расположения точек прикрепления мышц и оси вращения, а также от длины, силы мышцы и величины нагрузки. В зависимости от функции, которую выполняет конкретная мышца, возможно превалирование скоростных или силовых качеств. Чем длиннее мышца, тем выше скорость ее   укорочения.   При   этом   большую   роль   играет  параллельное расположение мышечных волокон относительно друг друга. В этом случае физиологическое поперечное сечение соответствует геометрическому (рис. 3, А). Примером такой мышцы может служить портняжная мышца. Напротив, силовые характеристики выше у мышц с так называемым перистым расположением мышечных волокон. При таком расположении мышечных волокон физиологическое поперечное сечение больше геометрического поперечного сечения (рис. 3, Б). Примером такой мышцы у человека может служить икроножная мышца.

У мышц веретенообразной формы, например у двуглавой мышцы  плеча, геометрическое сечение совпадает  с физиологическим только в средней  части, в других областях физиологическое  сечение больше геометрического, поэтому мышцы этого типа по своим характеристикам занимают промежуточное место (рис. 3, В). 

 

Рис. 3. Строение различных типов мышц и их физиологическое сечение.А  —  портняжная  мышца;  Б  —   икроножная  мышца;  В  —  двуглавая  мышца  плеча


 

 

При определении абсолютной силы различных мышц максимальное усилие, которое развивает мышца, делят на физиологическое поперечное сечение. Абсолютная сила икроножной мышцы человека составляет 5,9 кг/см, двуглавой мышцы плеча — 11,4 кг/см2 .

 

2. Основные свойства сердечной мышцы

Стенка сердца состоит  из 3 слоев. Средний слой (миокард) состоит  из поперечнополосатой мышцы. Сердечная  мышца, как и скелетные мышцы, обладает свойством возбудимости, способностью проводить возбуждение и сократимостью. К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм.

Возбудимость  сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходим более сильный раздражитель, чем для скелетной.

Проводимость. Возбуждение по волокнам сердечной мышцы проводится с меньшей скоростью, чем по волокнам скелетной мышцы.

Сократимость. Реакция сердечной мышцы не зависит от силы наносимых раздражений. Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.

Рефрактерный  период. Сердце, в отличие от других возбудимых тканей, имеет значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в период ее активности. Благодаря этому сердечная мышца не способна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматизм  сердца. Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизма.

 

 

3. Гладкие мышцы

Гладкие мышцы  находятся в стенке внутренних органов, кровеносных и лимфатических сосудов, в коже. Они морфологически отличаются от скелетной и сердечной мышц отсутствием видимой поперечной исчерченности.  

 

3.1. Физиологические особенности гладких мышц

Гладкие мышцы менее возбудимы, чем поперечнополосатые. Возбуждение по ним распространяется с небольшой скоростью – 2-15 см/с. Возбуждение в гладких мышцах может передаваться с одного волокна на другое, в отличие от нервных волокон и волокон поперечнополосатых мышц.

Сокращение гладкой  мускулатуры происходит более медленно и длительно.

Рефрактерный период в гладких мышцах более продолжителен, чем в скелетных.

Важным свойством гладкой  мышцы является ее большая пластичность, т.е. способность сохранять приданную растяжением длину без изменения напряжения. Данное свойство имеет существенное значение, так как некоторые органы брюшной полости (матка, мочевой пузырь, желчный пузырь) иногда значительно растягиваются.

Характерной особенностью гладких мышц является их способность к автоматической деятельности, которая обеспечивается нервными элементами, заложенными в стенках гладкомышечных органов.

Адекватным раздражителем  для гладких мышц является их быстрое  и сильное растяжение, что имеет  большое значение для функционирования многих гладкомышечных органов (мочеточник, кишечник и другие полые органы)

Особенностью гладких  мышц является также их высокая чувствительность к некоторым биологически активным веществам (ацетилхолин, адреналин, норадреналин, серотонин и др.).

Гладкие мышцы иннервируются  симпатическими и парасимпатическими вегетативными нервами, которые, как правило, оказывают противоположное влияние на их функциональное состояние.

Список литературы

 

  1. Физиология человека: Учебник/ под ред.В.М. Покровского Г.Ф. Коротько М.: Медицина 2003. 
  2. Сапин М.Р., Брыксина З.Г. Анатомия и физиология детей и подростков. Учеб. пособие для студ. пед. вузов. - М.: издательский центр «Академия», 2002. 
  3. Агаджанян Н.А. Основы физиологии человека: учебник для студентов вузов - М.: РУДН 2001. 

 
Интернет-источники

  1. Калион Г.В. Лекции для медицинских учебных заведений// http://medlecture.ru/



Информация о работе Физиология мышечной системы