Контрольная работа по "Технологии материалов"

Автор работы: Пользователь скрыл имя, 11 Декабря 2012 в 17:32, контрольная работа

Краткое описание

Отжигом называется процесс термической обработки, заключающийся в нагреве стали до определенной температуры и последующем, как правило, медленном охлаждении с целью получения более равновесной структуры.

Основные виды отжига — полный, неполный (на зернистый перлит), изотермический, диффузионный, рекристаллизационный (хо-лоднодеформированной стали).

Содержимое работы - 1 файл

Міністерство науки і освіти України.doc

— 449.50 Кб (Скачать файл)

Міністерство освіти і науки, молоді та спорту України

Запорізький національний технічний університет

 

 

 

 

 

Кафедра технології матеріалів

 

 

 

 

 

 

Контрольна  робота

 

З дисципліни

Технологія  матеріалів

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вик. ст. групи ГФз-918

Цибульська  Д.В.

Кер.: проф. Мітяєв О.А.

 

Запоріжжя, 2012

План

 

 

  1. Опишите основные виды отжига стали и их предназначение.
  2. Изложите процесс производства меди из сернистых руд, начиная от переработки руды и заканчивая рафинированием.
  3. Опишите технологические особенности изготовления отливок из стали.
  4. Опишите оборудование для ковки, его характеристики. Приведите схему паровоз душного ковочного молота.
  5. Опишите сущность, технологию, оборудование и область применения газовой сварки.

 

 

 

 

 

 

 

 

 

 

 

 

Опишите основные виды отжига стали и их предназначение.

Отжигом называется процесс термической обработки, заключающийся в нагреве стали до определенной температуры и последующем, как правило, медленном охлаждении с целью получения более равновесной структуры.

 

Основные виды отжига — полный, неполный (на зернистый перлит), изотермический, диффузионный, рекристаллизационный (хо-лоднодеформированной стали).

 

Полный  отжиг наиболее часто применяется для доэвтектоидных сталей. Изделия нагреваются до температуры на 30…50 °С выше критической точки Ас3 для полной перекристаллизации исходной структуры. После такого нагрева аустенит становится мелкозернистым, что при последующем замедленном охлаждении дает возможность получения мелкозернистой ферритно-перлитной структуры. Если при отжиге нагрев произвести значительно выше Ас3, то зерна аустенита могут вырасти до крупных размеров, и при дальнейшем охлаждении образуется грубая структура, состоящая из крупных зерен феррита и перлита. Такая сталь обладает пониженной пластичностью.

 

Таким образом, основным назначением полного отжига является измельчение зерна доэвтектоидной стали, повышение пластических свойств, улучшение обрабатываемости резанием.

 

Неполный  отжиг применяется для заэвтектоидных сталей. При таком отжиге сталь нагревается до температуры на 30…50 °С выше Ас1 (740…770 °С), при которой сохраняется вторичный цементит. После охлаждения цементит получается в виде зерен. Получению зернистого цементита способствует предшествующая отжигу горячая пластическая деформация, в результате которой цементитная сетка дробится. Сталь с зернистым цементитом лучше обрабатывается режущим инструментом и приобретает хорошую структуру после закалки.

 

Для доэвтектоидной стали неполный отжиг применяется  редко, так как в этом случае полной перекристаллизации не происходит и  часть зерен феррита остается в том же виде, что и до отжига. Такой вид термообработки проводится только в том случае, когда исправление структуры не требуется, а необходимо только понижение твердости.

 

Если после  проведения неполного отжига цементит остается пластинчатым, проводится так называемый циклический отжиг, при котором сталь нагревается до температуры немного выше Ас1 с последующим охлаждением до температуры чуть ниже Аr1 (~680 °С) c повторением этого цикла несколько раз.

 

Изотермический  отжиг используется для улучшения обрабатываемости легированных сталей. Порядок отжига следующий. Нагрев стали на 30…50 °С выше Ас3 , охлаждение до температуры немного ниже Аr1, изотермическая выдержка при этой температуре для получения равновесной перлитной структуры и последующее охлаждение на воздухе.

 

При отжиге легированных сталей увеличиваются не только продолжительность  нагрева и выдержки, но и продолжительность  охлаждения. И все-таки их твердость  после отжига остается достаточно высокой, что ухудшает обрабатываемость резанием.

 

Диффузионный (гомогенезирующий) отжиг предназначен для устранения химической неоднородности (ликвации), возникающей при кристаллизации. Такому отжигу подвергаются в основном слитки или отливки из легированных сталей. Это объясняется тем, что скорость диффузии углерода, растворенного в аустените, на несколько порядков больше скорости диффузии легирующих элементов. Поэтому гомогенизация углеродистых сталей происходит практически в процессе их нагрева. Режим гомогенезирующего отжига: нагрев до температуры 1050…1200 °С, выдержка при отмеченной температуре 8…10 часов и последующее медленное охлаждение. Крупное зерно, возникающее в процессе отжига, устраняется другими видами термообработки.

 

Рекристаллизационный  отжиг применяется для устранения наклепа после холодной пластической деформации. Этот вид отжига чаще используется как промежуточная операция для снятия наклепа между операциями холодного деформирования. Для углеродистых сталей с содержанием углерода 0,08…0,2 % (наиболее часто подвергаемых обработке давлением) температура нагрева при отжиге составляет 680…700 °С. Отжиг калиброванных прутков из высокоуглеродистых легированных сталей проводится при 680…740 °С в течение 0,5…1,5 часов.

 

 

 

 

 

 

 

 

Процесс производства меди из сернистых руд, начиная от переработки руды и заканчивая рафинированием.

 

 

Медные руды характеризуются невысоким содержанием меди. Поэтому перед плавкой тонкоизмельченную руду подвергают механическому обогащению; при этом ценные минералы отделяются от основной массы пустой породы; в результате получают ряд товарных концентратов (например, медный, цинковый, пиритный) и отвальные хвосты.

      В рудах медь обычно находится в виде сернистых соединений (медный колчедан или халькопирит CuFeS2, халькозин Cu2S, ковелин CuS), оксидов (куприт Cu2O, тенорит CuO) или гидрокарбонатов (малахит CuCO3 ( Cu(OH2), азурит 2CuCO3 ( Cu(OH)2).

Пустая порода состоит из пирита FeS, кварца SiO2, карбонатов магния и кальция (MgCO3 и CaCO3), а также из различных силикатов, содержащих Al2O3, CaO, MgO и оксиды железа. В рудах иногда содержится значительное количество других металлов: цинк, олово, никель, золото, серебро, кремний и другие.

Руды делятся  на сульфидные, окисленные и смешанные. Сульфидные руды бывают обычно первичного происхождения, а окисленные руды образовались в результате окисления металлов сульфидных руд.

В небольших  количествах встречаются так  называемые самородные руды, в которых  медь находится в свободном виде.

В мировой практике в 80% медь извлекают из концентратов пирометаллургическими методами, основанными на расплавлении всей массы материала.

Пирометаллургический  способ пригоден для переработки  всех руд и особенно эффективен в  том случае, когда руды подвергаются обогащению. Основу этого процесса составляет плавка, при которой расплавленная  масса разделяется на два жидких слоя: штейн-сплав сульфидов и шлак-сплав окислов. В плавку поступают либо медная руда, либо обожженные концентраты медных руд. Обжиг концентратов осуществляется с целью снижения содержания серы до оптимальных значений. Жидкий штейн продувают в конвертерах воздухом для окисления сернистого железа, перевода железа в шлак и выделения черновой меди. Черновую медь далее подвергают рафинированию - очистке от примесей.

 

Подготовка  руд к плавке

Большинство медных руд обогащают способом флотации. В результате получают медный концентрат, содержащий 8-35% Cu, 40-50% S, 30-35% Fe и пустую породу, главным образом составляющими которой являются SiO2, Al2O3 и CaO.

Концентраты обычно обжигают в окислительной среде с тем, чтобы удалить около 50% серы и получить обожженный концентрат с содержанием серы, необходимым для получения при плавке достаточно богатого штейна.

Обжиг обеспечивает хорошее  смешение всех компонентов шихты  и нагрев ее до 550-600 0С и, в конечном итоге, снижение расхода топлива  в отражательной печи в два раза. Однако при переплавке обожженной шихты несколько возрастают потери меди в шлаке и унос пыли. Поэтому обычно богатые медные концентраты (25-35% Cu) плавят без обжига, а бедные (8-25% Cu) подвергают обжигу.

Температура обжига концентратов применяют многоподовые печи с механическим перегреванием. Такие печи работают непрерывно.

 

Выплавка медного  штейна

Медный штейн, состоящий  в основном из сульфидов меди и  железа (Cu2S+FeS=80-90%) и других сульфидов, а также окислов железа, кремния, алюминия и кальция, выплавляют в печах различного типа.

Комплексные руды, содержащие золото, серебро, селен и теллур, целесообразно обогащать так, чтобы  в концентрат была переведена не только медь, но и эти металлы. Концентрат переплавляют в штейн в отражательных или электрических печах.

Сернистые, чисто медные руды целесообразно перерабатывать в шахтных печах.

При высоком содержании серы в рудах целесообразно применять  так называемый процесс медно-серной плавки в шахтной печи с улавливанием газов и извлечением из них элементарной серы.

В печь загружают медную руду, известняк, кокс и оборотные  продукты. Загрузку ведут отдельными порциями сырых материалов и кокса. В верхних горизонтах шахты создается  восстановительная среда, а в  нижней части печи - окислительная. Нижние слои шихты плавятся, и она постепенно опускается вниз навстречу потоку горячих газов. Температура у фурм достигается 1500 0С на верху печи она равна примерно 450 0С. Столь высокая температура отходящих газов необходима для того, чтобы обеспечить возможность из очистки от пыли до начала конденсации паров серы.

В нижней части печи, главным  образом у фурм, протекают следующие  основные процессы:

   а) Сжигание углерода кокса

C + O2 = CO2

   б) Сжигание серы сернистого железа

2FeS + 3O2 = 2 FeO + 2SO2

   в) Образование силиката железа

2FeO + SiO2 = (FeO)2 ( SiO2

Газы, содержащие CO2, SO2, избыток кислорода и азот, проходят вверх через столб шихты. На этом пути газов происходит теплообмен между шихтой и ними, а также взаимодействие CO2 с углеродом шихты. При высоких температурах CO2 и SO2 восстанавливаются углеродом кокса и при этом образуется окись углерода, сероуглерод и сероокись углерода:

CO2 + C = 2CO

2SO2 + 5C = 4CO + CS2

SO2 + 2C = COS + CO

В верхних горизонтах печи пирит разлагается по реакции:

FeS2 = Fe + S2

При температуре  около 1000 0С плавятся наиболее легкоплавкие эвтектики из FeS и Cu2S, в результате чего образуется пористая масса.

В порах этой массы расплавленный поток сульфидов  встречается с восходящим потоком  горячих газов и при этом протекают химические реакции, важнейшие из которых указаны ниже:

   а) образование сульфида меди из закиси меди

2Cu2O + 2FeS + SiO2 = (FeO)2( SiO2 + 2Cu2S;

   б) образование силикатов из окислов железа

3Fe2O3 + FeS + 3,5SiO2 = 3,5(2FeO ( SiO2) + SO2;

3Fe3O4 + FeS + 5SiO2 = 5(2FeO ( SiO2) + SO2;

   в) разложение CaCO3 и образование силиката извести

CaCO3 + SiO2 = CaO ( SiO2 + CO2;

   г) восстановление сернистого газа до элементарной серы

SO2 + C = CO2 + 1/2 S2

В результате плавки получаются штейн, содержащий 8-15% Cu, шлак состоящий в основном из силикатов железа и извести, колошниковый газ, содержащий S2, COS, H2S, и CO2. Из газа сначала осажают пыль, затем из него извлекают серу (до 80% S)

Чтобы повысить содержание меди в штейне, его подвергают сократительной плавке. Плавку осуществляют в таких же шахтных печах. Штейн загружают кусками размером 30-100 мм вместе с кварцевым флюсом, известняком и коксом. Расход кокса составляет 7-8% от массы шихты. В результате получают обогащенный медью штейн (25-40% Cu) и шлак (0,4-0,8% Cu).

Температура плавления переплавки концентратов, как уже упоминалось, применяют отражательные и электрические  печи. Иногда обжиговые печи располагают  непосредственно над площадкой  отражательных печей с тем, чтобы  не охлаждать обожженные концентраты и использовать их тепло.

По мере нагревания шихты  в печи протекают следующие реакции  восстановления окиси меди и высших оксидов железа:

6CuO + FeS = 3Cu2O + SO2 + FeO;

FeS + 3Fe3O4 + 5SiO2 = 5(2FeO ( SiO2) + SO2

В результате реакции  образующейся закиси меди Cu2O с FeS получается Cu2S:

Cu2O + FeS = Cu2S + FeO

Сульфиды меди и железа, сплавляясь между собой, образуют первичный штейн, а расплавленные  силикаты железа, стекая по поверхности  откосов, растворяют другие оксиды и  образуют шлак.

Благородные металлы (золото и серебро) плохо растворяются в шлаке и практически почти полностью переходят в штейн.

Штейн отражательной  плавки на 80-90% (по массе) состоит из сульфидов меди и железа. Штейн  содержит, %: 15-55 меди; 15-50 железа; 20-30 серы; 0,5-1,5 SiO2; 0,5-3,0 Al2O3; 0.5-2.0 (CaO + MgO); около 2% Zn и небольшое количество золота и серебра. Шлак состоит в основном из SiO2, FeO, CaO, Al2O3 и содержит 0,1-0,5 % меди. Извлечение меди и благородных металлов в штейн достигает 96-99 %.

 

Конвертирование медного штейна

      В 1866 г. русский инженер Г. С. Семенников предложил применить конвертер типа бессемеровского для продувки штейна. Продувка штейна снизу воздухом обеспечила получение лишь полусернистой меди (около 79% меди) - так называемого белого штейна. Дальнейшая продувка приводила к затвердеванию меди. В 1880 г. русский инженер предложил конвертер для продувки штейна с боковым дутьем, что и позволило получить черновую медь в конвертерах.

Конвертер делают длиной 6-10, с наружным диаметром 3-4 м. Производительность за одну операцию составляет 80-100 т. Футеруют конвертер магнезитовым кирпичом. Заливку расплавленного штейна и слив продуктов осуществляют через горловину конвертера, расположенной в средней части его корпуса. Через ту же горловину удаляют газы. Фурмы для вдувания воздуха расположены по образующей поверхности конвертера. Число фурм обычно составляет 46-52, а диаметр фурмы - 50мм. Расход воздуха достигает 800 м2/мин. В конвертер заливают штейн и подают кварцевый флюс, содержащий 70-80% SiO2, и обычно некоторое количество золота. Его подают во время плавки, пользуясь пневматической загрузкой через круглое отверстие в торцевой стенке конвертеров, или же загружают через горловину конвертера.

Информация о работе Контрольная работа по "Технологии материалов"