Нетрадиционная энергетика и окружающая среда

Автор работы: Пользователь скрыл имя, 20 Января 2013 в 19:51, контрольная работа

Краткое описание

Энергия – всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое – действие, деятельность) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую.
Согласно представлениям физической науки, энергия – это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии.

Содержание работы

Введение 3
Общая характеристика современного энергетического производства 6
Нетрадиционная энергетика и ее характеристика 7
Ветроэнергетика 9
Гелиоэнергетика 10
Биоэнергетика 12
Другие виды нетрадиционной энергетики 13
Энергетика и окружающая среда 15
Заключение: 16
Литература: 18

Содержимое работы - 1 файл

нетрадиционная энергетика и окружающая среда (1).doc

— 138.50 Кб (Скачать файл)

Третье: сжигание отходов в котлах и печах специальных конструкций. В мире сотни миллионов тонн таких отходов сжигаются с регенерацией энергии. Прессованные брикеты из бумаги, картона, древесины, полимеров по теплотворной способности сравнимы с бурым углем.

Малая гидроэнергетика. В настоящее время признанных единых критериев причисления ГЭС к категории малых гидростанций не существует. У нас принято считать малыми гидростанции мощностью от 0,1 до 30 МВт, при этом введено ограничение по диаметру рабочего колеса гидротурбины до 2 м и по единичной мощности гидроагрегата – до 10 МВт. ГЭС установленной мощностью менее 0,1 МВт выделены в категории микро-ГЭС.

Малая гидроэнергетика в мире в  настоящее время переживает третий виток в истории своего развития. Строительство первых ГЭС началось еще в прошлом веке, когда они  предназначались для энергоснабжения  отдельных заводов и поселков. Затем темпы их строительства замедлились из-за конкуренции небольших тепловых электростанций. Второй этап массового строительства малых ГЭС пришелся на конец 40-х – начало 50-х гг., когда тысячи малых гидростанций строились колхозами, совхозами, предприятиями и государством. В 70-80-х гг. сотни и тысячи малых ГЭС были выведены из эксплуатации либо законсервированы, либо ликвидированы из-за быстрого развития большой энергетики на базе крупных тепловых гидравлических и атомных станций. На третьем витке возрождение малых ГЭС, естественно, происходит на новом техническом уровне основного энергетического оборудования, степени автоматизации и компьютеризации.

Другие виды нетрадиционной энергетики

Геотермальная энергетика – получение энергии от внутреннего тепла Земли. Различают естественную и искусственную геотермальную энергию – от природных термальных источников и от закачки в недра Земли воды, других жидкостей или газообразных веществ («сухая» и «мокрая» геотермальная энергетика). Данный вид энергетики широко применяется для бытовых целей и отопления теплиц. Имеются геотермальные ТЭС. Недостаток – токсичность термальных вод и химическая агрессивность жидкостей и газов.

Космическая энергетика – получение солнечной энергии на специальных геостационарных спутниках Земли с узконаправленной передачей энергии на наземные приемники.  
На этих спутниках солнечная энергия трансформируется в электрическую и в виде электромагнитного луча сверхвысокой частоты передается на приемные станции на Земле, где преобразуется в электрическую энергию. Мощность одной орбитальной станции может составить от 3000 до 15000 МВт.

Морская энергетика базируется на энергии приливов и отливов (Кислогубская ЭС на Кольском полуострове), морских течений и разности температур в различных слоях морской воды. Иногда к ней относят волновую энергетику. Пока морская энергетика малорентабельна из-за разрушающего воздействия на оборудование морской воды. Приливная энергетика рентабельна па побережьях морей с исключительно высокими приливами.

Низкотемпературная энергетика – получение энергии с использованием низкотемпературного тепла Земли, воды и воздуха, вернее разности в температурах их различных слоев. Промышленное получение энергии с использованием разности температур на поверхности и в глубинах океана пока не выходит за рамки опытных установок.

«Холодная» энергетика – способы получения энергоносителей путем физико-химических процессов, идущих при низких температурах и сходных с происходящими в растениях. Например, разложение воды на асимметричных мембранах под воздействием солнечного света. Молекула воды распадается на водород и кислород, скапливающиеся по разные стороны этой мембраны. Водород затем используют как энергоноситель. КПД таких мембран в последние годы удалось заметно повысить,  
а цену – понизить. Вероятно, это перспективный путь. Предполагается, что водород будет широко использоваться в авиации, водном и наземном транспорте, промышленности, сельскохозяйственном производстве. Сжигание водорода не дает вредных выбросов, но он взрывоопасен.

Управляемая термоядерная реакция. Физики работают над освоением управляемой термоядерной реакции синтеза ядер тяжелого водорода с образованием гелия. При таком соединении выделяется громадное количество энергии, гораздо больше, чем при делении ядер урана.  
Доказано, что основная доля энергии Солнца и звезд выделяется именно при синтезе легких элементов. Если удастся осуществить управляемую реакцию синтеза, появится неограниченный источник энергии.

Ученые уверены, что в начале следующего тысячелетия получение  энергии за счет термоядерного синтеза превратится из чисто теоретической концепции в обыденную реальность.  
Весьма перспективными являются энергетические установки, преобразующие одни виды энергии в другие нетрадиционными способами с высоким КПД.

Тепловую энергию в электрическую преобразует магнито-гидродинамический генератор (МГД), который относится к перспективным устройствам (рис. 2.5).  
В настоящее время имеется практика эксплуатации магнитогидродинамичекой (МГД) установки, КПД которой превышает 45%. Чтобы понять принцип действия МГД генераторов, следует вспомнить два положения физики:

  • при высоких температурах (2500 – 3000о С) газы ионизируются, образуется так называемая плазма;
  • электрический ток – это направленное движение электронов в металлах или ионов в жидкостях и газах.

Движение плазмы представляет собой  электрический ток. Для разделения положительных и отрицательных  ионов плазма должна пересекать магнитное  поле, в котором положительные  ионы отклоняются в одну сторону, а отрицательные – в другую. Концентрация положительных и отрицательных ионов на металлических пластинах придает им положительный и отрицательный потенциал; пластины становятся источником электродвижущей силы (ЭДС). В МГД установках в качестве энергоносителя используется низкотемпературная плазма (около 2700о С), образующаяся при сгорании органического топлива – природного газа или твердого топлива.

Большой интерес уделяют непосредственному  преобразованию химической энергии  органического топлива в электрическую  – созданию топливных элементов. Распространение получили низкотемпературные (t=150°С) топливные элементы с жидким электролитом (концентрированные растворы серной или фосфорной кислот и щелочей КОН). Топливом в элементах служит водород, окислителем – кислород из воздуха.

Ведутся работы по созданию энергетических установок, использующих энергию гравитации, вакуума, низких температур окружающего воздуха для обогревания помещений по принципу теплового насоса («холодильник наоборот», морозильное отделение которого помещено на улице).

Энергетика и окружающая среда

  Современный период развития человечества иногда характеризуют через три «Э»: энергетика, экономика, экология. Энергетика в этом ряду занимает особое место. Она является определяющей и для экономики, и для экологии. От нее зависит экономический потенциал государств и благосостояние людей. Она же оказывает наиболее сильное воздействие на окружающую среду, экологические системы и биосферу в целом. Самые острые экологические проблемы, такие как изменение климата, кислотные осадки, всеобщее загрязнение среды, стремительное истощение запасов органического топлива, прямо или косвенно связаны с производством или использованием энергии. Энергетике принадлежит первенство не только в химическом, но и других видах загрязнения: тепловом, аэрозольном, электромагнитном, радиоактивном, вибрационном. Поэтому от решения энергетических проблем зависит возможность решения основных экологических проблем. Энергетика – отрасль производства, развивающаяся невиданными темпами. Если численность населения в условиях современного демографического взрыва удваивается за 40-50 лет, то в производстве и потреблении энергии это происходит через каждые 12-15 лет.

  Проблемы отыскания альтернативных способов получения энергии всегда интересовали человечество, однако столь волнующими, как сегодня, они не были никогда. Мировое потребление энергии стало соизмеримым с запасами горючих ископаемых – базой современной энергетики. То, что природой создавалось на протяжении геологических эпох (миллионов лет), расходуется в течение нескольких десятилетий. Если до 1980 года всего в мире было добыто 150 млрд. т н э, то за 20 последних лет ХХ века предполагается использовать почти в 1,2 раза больше, что грозит не только исчерпанием легкодоступных, дешевых месторождений, но и серьезными экологическими осложнениями.

  Во всем мире для производства электрической и тепловой энергии используется органическое топливо, атомная и гидроэнергия. При условии, что энергоресурсы будут потребляться все возрастающими темпами, называются следующие приблизительные сроки их полного израсходования: уголь – в конце XXII века; нефть и газ – в конце XXI века; уран – в середине XXI века.  
 Гидроэнергия относится к возобновляемым видам энергии, но и ее освоение закончится к началу XXI века.

  Однако некоторые футурологи считают, что раньше, чем человечество сожжет последний килограмм топлива, оно израсходует последний килограмм кислорода. По имеющимся расчетам, расход кислорода быстро растет. Так, если в 1960 г. на сожжение всех видов топлива понадобилось 1,3 млрд. тонн кислорода, то в 1980 г. – уже 12 млрд. тонн, а в 2000 г. энергетика поглотила около 60 млрд. тонн кислорода атмосферы.

  Кроме проблемы ограниченности природных ресурсов имеется и ряд других негативных последствия использования органического топлива на окружающую среду. Так, извлечение нефти и природного газа ведет к оседанию почвы. Нефть и газ, скопившиеся в пористых породах под поверхностью Земли, служат своеобразной «подушкой», поддерживающей лежащую сверху породу. Когда эта подушка извлекается, земная поверхность в районе залегания нефти и газа опускается на глубину до 10 метров. Кроме того, извлечение из земных недр полезных ископаемых ведет к перераспределению гравитационного напряжения в земной коре, которые иногда заканчиваются землетрясениями.  
 Сжигание топлива – не только основной источник энергии, но и важнейший поставщик в окружающую среду загрязняющих веществ. Тепловые электростанции вместе с транспортом поставляют в атмосферу основную долю техногенного углерода (в основном в виде СО), около 50% диоксида серы, 35% оксидов азота и около 35% пыли.

Заключение:

Надежное и безопасное энергообеспечение является основополагающим условием жизнедеятельности и развития общества. Однако в последнее время  мировое потребление энергии  стало соизмеримо с запасами горючих ископаемых – базой современной энергетики. Почти 90 % используемых в настоящее время топливно-энергетических ресурсов для выработки энергии составляют ископаемые виды топлива. Если запасы угля в количественном отношении не вызывают тревоги, то перспектива истощения нефтяных пластов, и меньшей степени природного газа, заставляет серьезно надуматься о последствиях.

Нефть остается главным видом топлива в общем энергопотреблении.

Природный газ: Рост использования газа происходит, в основном, за счет сокращения потребления атомной энергии и угля. Основную долю в приросте спроса на газ составляют новые электростанции. Развитие новых технологий в области создания газовых турбин комбинированного цикла обуславливает перестройку электроэнергетики в пользу газа.

Широкому применению газа способствует также его экологические преимущества, выражающиеся в значительно меньшем по сравнению с нефтью и углем объеме выбросов вредных веществ в атмосферу.

Мировой спрос на уголь растет более низкими темпами, чем общее потребление первичных энергоносителей. Почти весь прирост спроса приходится на электроэнергетику.

Производство  электроэнергии на АЭС растет за счет строительства новых электростанций.

Мировое потребление  гидроэнергии возрастает (особенно в развивающихся странах).

Использование других возобновляемых источников энергии (геотермальная, солнечная, ветровая, приливов, волн, производимая на базе биомассы и отходов) растет наиболее высокими темпами. Расширение использования возобновляемых источников обусловлено продолжением процесса изменения климата Земли, однако по уровню цен они все еще не могут конкурировать с ископаемыми видами топлива, и их развитие в дальнейшем будет во многом зависеть от различных форм финансовой поддержки со стороны правительств.

Таким образом, ископаемые виды топлива преобладают в мировом  потреблении первичных топливно-энергетических ресурсов. Мировое потребление энергии и выбросы углекислого газа (С02) неуклонно возрастают; выработка превышает Киотскую договоренность в области экологии.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Литература:

 

  1. Основы энергосбережения: Курс лекций/Свидерская О.В.– 

3-е издание  – Мн.:Академия управления при  Президенте Республики Беларусь, 2004. – 296 с.

  1. http://mgplm.org/publ/1-1-0-4
  2. http://literature.agrodelo.com/ru/science_literature/ecology/5326/5387/5436/
  3. http://www.sibai.ru/netradiczionnaya-energetika-i-energoresursosberezhenie.html

Информация о работе Нетрадиционная энергетика и окружающая среда