Антенны

Автор работы: Пользователь скрыл имя, 17 Февраля 2013 в 20:00, реферат

Краткое описание

Расширение круга задач, решаемых современной радиоэлектроникой, а также их усложнение стимулировало в последние десятилетия интенсивное развитие теории и техники антенн. Основные области использования радиоэлектроники -- связь, телевидение, радиолокация, радиоуправление, радиоастрономия, а также системы определения государственной принадлежности, инструментальной посадки, радиоэлектронного противодействия, телеметрия и другие невозможны без применения антенн с различными характеристиками. В процессе развития антенн они усложнялись, появлялись принципиально новые их классы, расширялись выполняемые функции, и антенны зачастую превращались из простых взаимных устройств в сложные динамические системы, содержащие в большинстве случаев сотни, тысячи различных элементов.

Содержимое работы - 1 файл

Кафедра ТОР БГА РФ, заочн. фак.4-й курс..doc

— 6.31 Мб (Скачать файл)

Для крупных и наиболее высокоточных БЗА сантиметрового и миллиметрового диапазонов требуемые точности ЗС составляют 0,1...1 мм при диаметрах антенн 10...100 м, что соответствует относительной точности 10-4... 10-6. Построить ЗС с наиболее высокими параметрами практически возможно лишь при использовании различных методов автоматической компенсации переменных деформаций их каркаса и ограничения переменных составляющих внешних влияний. При этом требование к средствам компенсации сводится к поддержанию теоретической формы зеркал ЗС в таких пределах, в которых сохраняется достаточно хорошая фокусировка поля в фокальном пятне, а на стабильность положения фокуса жестких ограничений не накладывается, поскольку эта часть расфокусировки сравнительно легко компенсируется. Такие ЗС называются гомологическими.

Указанная компенсация реализуется либо естественным путем за счет выбора жесткости и массы соответствующих опор, либо принудительно с помощью механизмов с дистанционным автоматическим управлением по программным данным или от датчиков контроля расфокусировки ЗС. Часть поперечной расфокусировки, которая не сказывается существенно на эффективности антенны, компенсируется введением угловой поправки в систему наведения[2].

Для построения облегченных, экономичных каркасов ЗС невысокой точности определенный интерес представляют вантово-стержневые конструкции с предварительным натяжением вант. Практика создания антенн с такими ЗС подтверждает их способность работать в метровом и дециметровом диапазонах.

Основными задачами при создании многократно статически неопределимых вантово-стержневых каркасов являются: разработка инженерных методов расчета, отработка методики сборки с обеспечением расчетного предварительного напряжения, а также исследование зависимостей между габаритно-массовыми характеристиками ЗС, воздействующими на них весовыми и ветровыми нагрузками и возникающими деформациями ЗС.

Обычно в гомологических ЗС любого класса остаточные искажения формы заметно меньше абсолютных деформаций . Для достаточно совершенных ЗС отношение и является показателем гомологичности конструкций. Основными условиями достижения гомологичности являются:

  • строгая осевая симметрия конструкции главного зеркала,
  • его опирание на угломестную ось без существенного нарушения осевой симметрии деформаций промежуточных конструкций,
  • подбор необходимого соотношения жесткостей и массы элементов каркаса радиально-кольцевой ферменной структуры,
  • устранение локальных нагрузок на каркас зеркала со стороны опор облучающей системы и кабин с прямой их передачей на жесткие промежуточные конструкции между ЗС и ОПУ.

Для высокогомологичных в условиях весовых нагрузок ЗС результирующие искажения их формы определяются другими, менее регулярными воздействиями. Среди них ветровые воздействия, которые по направлению значительно более разнообразны и распределены по конструкциям менее однородно, чем весовые[1].

Для оценки степени ветровой гомологичности конструкций ЗС требуется детальное изучение сложной структуры аэродинамического давления на элементы антенны в зависимости от ее ракурса по отношению к ветру и аэродинамических свойств конструкций. Такие исследования трудоемки и обычно ведутся на моделях антенн в аэродинамических трубах и на гидродинамических установках с соблюдением принципов соответственно аэродинамического и гидродинамического моделирования, а также в натурных условиях.

Другой нерегулярный фактор воздействия на конструкции ЗС состоит в равномерном и неравномерном по пространству и достаточно медленном во времени изменении их температуры под влиянием окружающего воздуха, солнечной радиации и обдува ветром. С увеличением электрических размеров БЗА и по мере совершенствования методов построения гомологичных по весовым нагрузкам каркасов роль их температурных погрешностей возрастает.

Изменение тепловых полей в антенне зависит от многих факторов: ракурса антенны по отношению к Солнцу и ветру, облачности и силы ветра, высотного градиента температуры воздуха в пределах крупных сооружений, вклада вторичного теплового излучения отражающей поверхности зеркала и тех опорных конструкций, которые имеют большую площадь, неравномерности тепловой инерции а разных зонах конструкций при суточном изменении температур.

Основным средством борьбы с неравномерными тепловыми деформациями является максимальное снижение градиентов линейных расширений затечет выравнивания поля температур на силовых конструкциях, которое достигается применением тепло-отражающей светлой окраски конструкций, экранированием силового каркаса ЗС от воздействия прямого и вторичного солнечного нагрева и обдува ветром, перемешиванием воздуха внутри теплоэкранированного каркаса.

Ослабление искажений формы ЗС под влиянием динамических возмущений обеспечивается теми же методами, что и снижение динамических угловых погрешностей системы наведения (см. далее в этом параграфе).

Медленно меняющиеся во времени остаточные искажения формы ЗС в гомологических конструкциях носят преимущественно среднемасштабный характер. Их дальнейшая компенсация невозможна без достаточно точного и подробного эксплуатационного контроля поверхности главного зеркала и автоматической коррекции ее формы с помощью сервомеханизмов, управляющих положением панелей отражающей поверхности [4]. В тех случаях, когда радиус корреляции искажений достаточно велик, автоматизированная коррекция формы ЗС может оказаться более простой при регулировке поверхности одного из вторичных зеркал вместо главного.

 

3.3. Отражающая поверхность зеркальных систем

 

Отражающая поверхность главного зеркала для перспективных БЗА выполняется в виде набора отдельных панелей, установленных на каркасе зеркала и не участвующих в работе его силовой схемы. Точность поверхности складывается из точностей изготовления и регулировки панелей на каркасе и стабильности их положения и формы в условиях эксплуатации. Перфорация панелей для высокоточных БЗА сантиметрового и миллиметрового диапазонов для снижения ветровых нагрузок оказывается малоэффективной и выполнима не для всех видов конструкций панелей.

Тепловые деформации панелей могут возникать под влиянием температурного градиента между их рабочей и тыльной поверхностями. Для снижения этих деформаций необходимо: уменьшение толщины панелей, выравнивание в них температуры по толщине за счет хорошей теплопроводности и применения для рабочей и тыльной поверхностей материала с малым коэффициентом линейного расширения, в лучшем случае на основе углепластика[5]. Кроме точности панели должны обладать механической устойчивостью к условиям монтажа и регулировки на антенне и многократным многолетним циклическим воздействиям воды, мороза, снежных и ледяных лавин, а при необходимости обеспечивать работу людей на поверхности зеркала при обслуживании антенны. Известны различные варианты конструкций панелей с характерными особенностями.

Существенное значение для высокоточных БЗА имеют методы и оборудование для выставки панелей на каркасе ЗС и контроля деформаций зеркал при их различных пространственных положениях и ветровых и тепловых воздействиях, что необходимо при монтаже и наладке антенны. Эти данные необходимы, в частности, для введения в формулу ЗС так называемых предыскажений, равных средним в диапазоне угломестных положений антенны весовым искажениям, взятым с противоположным знаком. Необходимость контроля формы ЗС может возникнуть и в процессе эксплуатации особо точных, наиболее крупных БЗА, которые оборудованы устройствами дистанционной коррекции положения панелей.

Широко использовавшиеся на определенной стадии развития БЗА обычные геодезические методы и аппаратура контроля формы ЗС сыграли свою положительную роль. Однако из-за недостаточности автоматизации эти методы уступают другим, более совершенным.

Стереофотограмметрический метод позволяет в короткое время получить, а затем обработать, в том числе с использованием ЭВМ, данные об искажениях формы поверхности зеркала фотографированием поля реперов на панелях с помощью нескольких разнесенных специальных фотоаппаратов, установленных с оптимальными ракурсами и базами в произвольной системе координат. Этот метод имеет определенные ограничения, как по точности, так и ло возможности оптимального размещения фотоаппаратов на конструкциях ЗС без дополнительных опор.

Радиодальномерный метод предусматривает контроль изменения высотного положения радиореперов относительно начальной формы поверхности ЗС вследствие деформации антенны. Измерение ведется с помощью фазового дальномера, установка которого принципиально возможна в произвольной точке над главным зеркалом. При этом плановые положения радиореперов в «плоскости поверхности зеркала должны быть известны. Для работы радиодальномера требуется оснащение всех контролируемых точек поверхности радиореперами в виде малогабаритных модулированных радиопереотражателей.

Наибольшими возможностями среди подобных методов обладает метод угломерно-дальномерных измерений в оптическом диапазоне с применением лазерных дальномеров фазового типа при точном контроле углового положения луча лазера. В большинстве случаев этот метод требует оснащения панелей реперами или отражателями в виде трапель -- призм либо пленочных отражателей типа катафот. В перспективе возможны измерения и без специальных отражателей. Полученные полные дальномерно-угломерные данные со всей поверхности зеркала обрабатываются на ЭВМ, в результате чего определяется положение начала и осей координат для расчетной формы ЗС, наименее уклоняющейся от измеренного состояния поверхности ЗС. Затем в найденной системе координат определяется остаточное отклонение поверхности зеркала от его расчетного профиля. Найденная ось ЗС привязывается к угломестной оси ОПУ устранением ее неперпендикулярности или введением соответствующих поправок в систему углового отсчета СН.

В последнее десятилетие все большее применение получает контроль формы ЗС методами радиоголографии. Для этого измеряется амплитудно-фазовое распределение поля на некоторой поверхности в ближней зоне антенны или в дальней зоне с захватом значительного числа боковых лепестков ДН в телесном угле. Измеренное распределение пересчитывается в апертурное распределение поля с использованием аппарата преобразования Фурье. Преимущество метода -- возможность многократного контроля при эксплуатации не только искажений главного зеркала, но и всей ЗС и ОС. Для любого из указанных методов принципиальное значение имеет высокая точность всех элементов измерительной системы и возможность автоматизации измерений и обработки результатов.

Оценивая результирующее СКО панелей и каркаса ЗС для высокоточных БЗА, можно представить их структуру в следующем виде:

  • погрешность изготовления панелей главного и вторичных зеркал, включая погрешность нанесения контрольных реперов;
  • методическая и аппаратурная погрешности контроля и регулировки положения реперных точек панелей при их установке на каркасах зеркал;
  • методическая и аппаратурная погрешности начального контроля и регулировка осевого и поперечного положений реперов вторичных зеркал и облучателя и ориентации их осей при установке на антенне;
  • весовые, ветровые, температурные и динамические негомологические деформации каркасов главного и вторичных зеркал;
  • некомпенсируемое эксплуатационное осевое и поперечное смещения центров вторичных зеркал вследствие деформации их опор;
  • ветровые, температурные и весовые деформации панелей.

В достаточно совершенной конструкции ЗС значения основных компонентов погрешности должны быть одного порядка. Учитывая, что число основных компонентов составляет 3. ..5 и они не коррелированны между собой, каждая из них из условия квадратурного сложения должна оцениваться как , где s --суммарная допустимая погрешность. Таким образом, при определении минимальной рабочей волны из условия допуск на основные составляющие погрешности оценивается в среднем как .

 

Список литературы:

 

  1. Соколов А. Г. Металлические конструкции антенных устройств. -- М.: Стройиздат. 1971.---240 с.
  2. Геруни П. М. Вопросы расчета сферических двухзеркальных антенн//Ра-диотехника и электроника. -- 1964. --Т. IX, № 1, С. 3---12.
  3. Есепкина Н. А., Корольков Д. В., Парийский Ю. Н. Радиотелескопы и радиометры. -- М.: Наука, 1973.--416 с.
  4. Кардашов Н. С.. Погребенко С. В., Царевский Г. С. Об апертурном синтезе с использованием космического радиотелескопа//Астрон. жур.--1980.-- Т. 57, вып. 3.--С. 634--648.
  5. Андрианов В. В., Кардашов Н. С. Проект наземно-космического радиоинтерферометра с длиной базы до 1 млн. км. и когерентной радиосвязью между телескопами//Космические исследования. -- 1981. -- Т. XIX, вып. 5. -- С. 763--772.
  6. О проблеме создания комплекса современных экономических радиотелескопов/Богомолов А. Ф., Соколов А. Г., Попереченко Б. А., Поляк В. С.: Антенны/Под ред. А. А. Пистолькорса. -- М.: Связь, 1976. -- Вып. 24. -- С. 106--123.
  7. Богомолов А. Ф., Попереченко Б. А., Соколов А. Г. Следящий параболический радиотелескоп ТНА-1500 диаметром 64 м: Антенны/Под ред. А. А. Пистолькорса. -- 1982. -- № 30. -- С. 3--13.
  8. Калачев П. Д., Саломонович А. Е. Радиотелескоп ФИАН СССР с 22-метровым параболическим рефлектором//Радиотехника и электроника.--1961.-- Т. VI, №3.--С. 422--425.

9. "ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ" N 3, 2004. А.Г. Давыдов, В.А. Калошин, Институт радиотехники и электроники РАН


 



 



Информация о работе Антенны