Будущее нанотехнологий: проблемы и перспективы

Автор работы: Пользователь скрыл имя, 26 Февраля 2012 в 18:29, курсовая работа

Краткое описание

Целью данной работы является изучение нанотехнологий в автомобилестроении. Задачами дипломной работы являются: 1) изучить историю и свойства нанотехнологий и наноструктур; 2) рассказать о применении нанотехнологий в автомобилестроении; 3) исследовать проблемы и перспективы нанотехнологий.

Содержание работы

Введение…………………………………………………………………………...2
История развития нанотехнологий…………………………………………..2
Свойства наностуктур………………………………………………………...5
2.1 Значение применения нанотехнологий для машиностроения……………..7
2.2 Технологические особенности применения нанотехнологий в машиностроении (на примере автомобильной промышленности)……………………10
2.3 Проблемы и перспективы развития нанотехнологий в машиностроении.15
Нанотехнологии в автомобилестроении…………………………………...18
3.1 Применение нанотехнологий в автомобильной промышленности………18
3.2 Перспективы нанотехнологии в автомобильной промышленности……..20
3.3 Нанотехнологии в техническом обслуживании…………………………...21
3.4 Автомобили будущего………………………………………………………26
Автомобилестроение и нанокомпозиты……………………………………33
Будущее нанотехнологий: проблемы и перспективы……………………..39
5.1. Нано на стыке наук………………………………………………………….43
Заключение……………………………………………………………………….46
Список использованной литературы…………………

Содержимое работы - 1 файл

нанотехнологии в автомобилестроении.docx

— 1.08 Мб (Скачать файл)

5) Ускоренное  движение электронов по поверхности  твердых наноструктур:

В научной  литературе проводят аналогию между  сверхпроводимостью тока и сверхтекучестью  жидкого гелия, объясняя, что жидкий гелий также образует единую когерентную  сверхтекучую систему - конденсат, который  тоже течет через щели без какого-либо сопротивления.

6) Повышенная  прочность на разрыв изолированных  твердых наноструктур.:Известно, что прочность на разрыв, например углеродных нанотрубок, в несколько десятков раз больше самой прочной стали при плотности в 6 раз меньшей (Головин, 2007). Удовлетворительного объяснения этому в научных работах пока не дано.

7) Способность  твердых наноструктур к самоорганизации и самосборке:

Наноструктуры, находящиеся в жидкой, газовой среде и в вакууме, обладают максимальными возможностями к самоорганизации и самосборке, так как эти среды не мешают им в полной мере проявить эти свои свойства.

 

2.1. Значение применения нанотехнологий для машиностроения

 

Проблему  катастроф различных физических объектов и на земле, и в воде, и в воздухе, и в космосе, в  основном, связанных с качеством  и надежностью машин, нельзя решить без учета эволюционного развития структуры материала на всех этапах его жизненного цикла. Понимание термина «технологический мониторинг» в контексте новой метрологии объемного наноструктурирования позволит решать задачи по обеспечению качества и повышенного ресурса оборудования, устранить необходимость завышенного коэффициента запаса прочности, что повышает конкурентоспособность.

 Объемное  наноструктурирование имеет решающее значение при разработке отличающихся малым весом летательных аппаратов из термически устойчивых материалов с высокой удельной прочностью.

Например:

Реализация  нанотехнологий в авиакосмической отрасли позволит:

  1. Повысить прочность летательных аппаратов. Сейчас ставится задача довести возможность их совершать до 70-90 тысяч полетов, что требует повышения прочностных характеристик, которые обеспечивают новые наноматериалы.
  2. Добиться «живучести» и снижения веса (которое обеспечивают в настоящее время композиты). К ним должны присоединиться наноматериалы.
  3. Переходя на нанотехнологии, можно достигнуть снижения трения.
  4. Решить задачи борьбы с обледенением и прилипанием к внешней стороне конструкции летательных аппаратов различной «биологической живности» с помощью отслаивающихся чешуек.
  5. Снизить заметность летательных аппаратов.

Космические аппараты будущего будут уже не просто машинами для перевозки живых  существ, но живыми организмами. Они  смогут обучаться, диагностировать  и ремонтировать себя. Применение нанотехнологии в аэрокосмической технике способно также обеспечить: снижение энергопотребления в 104 раз, снижение вибрации и шума - в 102, повышение быстродействия - в 106, повышение КПД солнечных батарей - в 101, повышение чувствительности датчиков - в 106, повышение времени автономной работы - в 104 раз, повышение надежности - в 102, повышение стойкости к радиации - в 101, повышение стойкости к перегрузкам - в 102 раз.

Внедрение нанотехнологий в автомобильную промышленность позволит сделать автомобили:

  1. Доступными (нанотехнологические методы производства позволяют создавать товары и услуги с низкой себестоимостью; в автомобилях будущего основной составляющей цены будет являться «брэнд»);
  2. комфортными (более совершенная работа механических частей, улучшенная шумо- и вибро- изоляция на основе наноструктурированных материалов, эргономичный салон);
  3. эффективными (повышения средней скорости движения автомобилей, повышение КПД использования энергии, необходимой для перевозки людей и грузов);
  4. интеллектуальными (широкое внедрение информационных систем во все узлы и компоненты автомобилей, принятие автомобилем все больших функций водителя на себя); 
  5. безопасными для человека и окружающей среды (новые, экологически чистые силовые установки, в том числе на топливных элементах, качественно новый уровень пассивной и активной безопасности для обитателей салона и пешеходов, широкое использование в конструкции авто биодеградируемых материалов, а с созданием дисассемблеров - возможность 100% утилизации устаревших автомобилей).

Кроме того, запатентованы новые  способы и ресурсосберегающие нанотехнологии, в том числе повышения долговечности на этапе эксплуатации, упрочнения твердых сплавов, нержавеющих, конструкционных и инструментальных марок стали, кузнечной сварки многослойных композиций и производства цельнокованого нержавеющего дамаска, квазиаморфного модифицирования карбидами и оксидами кремния. При этом ресурс изделий различного назначения, изготовленных по новой методологии для отраслей машиностроения повышается от 200 до 500%.

В целом  же, разработка и применение нанотехнологий в области машиностроения позволят достичь следующих основных целей:

  1. Изменение структуры валового внутреннего продукта в сторону увеличения доли наукоемкой продукции.
  2. Повышение эффективности производства.
  3. Переориентация российского экспорта с, в основном, сырьевых ресурсов на конечную высокотехнологичную продукцию и услуги путем внедрения наноматериалов и нанотехнологий в технологические процессы российских предприятий.
  4. Создание новых рабочих мест для высококвалифицированного персонала инновационных предприятии, создающих продукцию с использованием нанотехнологий.
  5. Развитие фундаментальных представлений о новых явлениях, структуре и свойствах наноматериалов.
  6. Формирование научного сообщества, подготовка и переподготовка кадров, нацеленных на решение научных, технологических и производственных проблем нанотехнологий, создание наноматериалов и наносистемной техники, с достижением на этой основе мирового уровня в фундаментальной и прикладной науках.

Эффективное достижение намеченных целей потребует  системного подхода к решению  целого ряда взаимоувязанных задач, основными из которых являются:

  1. Координация работ в области создания и применения нанотехнологий, наноматериалов и наносистемной техники;
  2. Создание научно-технической и организационно-финансовой базы, позволяющей сохранить и развивать имеющийся в России приоритетный задел в исследованиях и применении нанотехнологий; развитие бюджетных и внебюджетных фондов, поощряющих и развивающих исследования в области наноматериалов и нанотехнологий и стимулирующих вклады инвесторов;
  3. Формирование инфраструктуры для организации эффективных фундаментальных исследований, поиска возможных применений их результатов, развития новых нанотехнологий и их быстрой коммерциализации;
  4. Поддержка межотраслевого сотрудничества в области создания наноматериалов и развития нанотехнологий;
  5. Обеспечение заинтересованности в решении научных, технологических и производственных проблем развития нанотехнологий и наноматериалов путем либерализации налоговой политики, оптимизации финансовой политики; создание системы защиты интеллектуальной собственности;
  6. Разработка и внедрение новых подходов к обучению специалистов в области нанотехнологий.

 

2.2. Технологические особенности  применения нанотехнологий в машиностроении (на примере автомобильной промышленности)

 

Нанотехнологии обещают целый ряд выгод от широкомасштабного внедрения в массовое производство автомобилей. Так буквально каждый узел или компонент в конструкции автомобиля может быть в значительной степени усовершенствован при помощи нанотехнологий. 

Одним из наиболее перспективных и  многообещающих направлений применения (в том числе коммерческого) достижений современной нанотехнологии является область наноматериалов и электронных устройств.

Уже существуют легко очищающиеся  и водоотталкивающие покрытия для  материалов, основанные на использовании  диоксида кремния. 

В форме наночастиц это вещество приобретает новые свойства, в частности, высокую поверхностную энергию, что и позволяет частицам SiO2 при высыхании коллоидного раствора прочно присоединяться к различным поверхностям, в первую очередь к родственному им по составу стеклу, образуя, тем самым, сплошной слой наноразмерных выступов. 

Покрытие из наночастиц кремнезема делает обработанную поверхность гидрофобный - на поверхности с плёнкой из SiO2 капля воды касается субстрата лишь немногими точками, что во много раз уменьшает Ван-дер-ваальсовые силы и позволяет силам поверхностного натяжения жидкости сжать каплю в шарик, который легко скатывается по наклоненному стеклу, унося с собой накопившуюся грязь.

В силу наноразмерной толщины, такие покрытия совершенно невидимы, а благодаря биоинертности кремнезема - безвредны для человека и окружающей среды. Они устойчивы к ультрафиолету и выдерживают температуры до 400 °C, а действие водоотталкивающего эффекта длится в течение 4 месяцев.

Несколько зарубежных фирм уже выпускают  подобные покрытия в промышленных масштабах. На российском рынке их продукцию  представляет эксклюзивный дистрибутор - компания Nanotechnology News Network. 

Что касается в прямом понимании  самоочищающихся поверхностей, то такая  технология основана на использовании  диоксида титана. Принцип действия материала с таким покрытием заключается в следующем.

При попадании ультрафиолетового  излучения на нанопокрытие из TiO2 происходит фотокаталитическая реакция. В ходе этой реакции испускаются отрицательно заряженные частицы - электроны, а на их месте остаются положительно заряженные дырки. Благодаря появлению комбинации плюсов и минусов на поверхности, покрытой катализатором, содержащиеся в воздухе молекулы воды превращаются в сильные окислители - радикалы гидроокиси (HO), которые в свою очередь окисляют и расщепляют грязь, а также нейтрализуют различные запахи и убивают микроорганизмы.

Кроме покрытий для стекол также  разработаны и выпускаются составы  с аналогичным действием для  тканей, металла, пластика, керамики - и  все они имеют потенциал для  применения в автомобильной промышленности. 

Из серийных моделей автомобилей  гидрофобное покрытие наносится  на боковые стекла Nissan Terrano II. Оно не создает полноценный водоотталкивающий эффект, но уменьшает пятно контакта поверхности с каплями воды, благодаря чему во время дождя стекло остается вполне прозрачным (см. рис. 1).


 

 

 

 

 

 

 

 

 

Рисунок 1. Водоотталкивающий эффект гидрофобного покрытия

По некоторым сообщениям, концерн BMW работает над созданием самоочищающихся покрытий на основе нанопорошков. 

Компания Mercedes-Benz с конца 2003 года выпускает модели А, С, E, S, CL, SL, SLK покрытых новым поколением прозрачных лаков, изготовленных с использованием нанотехнологии. В состав верхнего слоя такого лакокрасочного покрытия вводят наноскопические керамические частицы. По утверждению создателей, новое лакокрасочное покрытие защищает кузов от царапин в три раза эффективнее, чем обычный лак.

По результатам испытаний оказалось, что покрытые лаком нового типа машины сохраняют блеск на 40% сильнее, чем  покрашенные обычной краской. 

Новое лаковое покрытие не только защищает кузов от механических повреждений, но еще и полностью отвечает требованиям  Mercedes относительно устойчивости к воздействию химических элементов, находящихся в воздухе.

В настоящее время с использованием нанотехнологических подходов уже производятся высокоэффективные антифрикционные и противоизносные покрытия для автотранспорта. Так российский концерн «Наноиндустрия» наладил серийное производство ремонтно-восстановительного состава «Нанотехнология». Состав предназначен для обработки механических деталей, испытывающих трение - двигали, трансмиссия. 

При применении состав позволяет создавать  модифицированный высокоуглеродистый железосиликатный защитный слой (МВЗС) толщиной 0,1-1,5 мм в областях интенсивного трения металлических поверхностей, что дает возможность избирательной компенсации износа мест трения и контакта деталей за счет образования в этих местах нового модифицированного поверхностного слоя. Использование РВС позволяет увеличивать ресурс работы узлов и деталей в 2-3 раза за счет замены плановых ремонтов предупредительной обработкой, снижает вибрации и шум, на 70-80% снижает токсичность выхлопа автомобиля без применения каких-либо других мер.

Информация о работе Будущее нанотехнологий: проблемы и перспективы