Строение и физиология продолговатого мозга

Автор работы: Пользователь скрыл имя, 19 Февраля 2012 в 19:38, контрольная работа

Краткое описание

Мозг человека состоит из 1012 нервных клеток. Обычная нервная клетка получает информацию от сотен и тысяч других клеток и передает сотням и тысячам, а количество соединений в головном мозге превышает 1014 - 1015. Открытые более 150 лет тому назад в морфологических исследованиях Р. Дютроше, К. Эренберга и И. Пуркинье, нервные клетки не перестают привлекать к себе внимание исследователей.

Содержание работы

1. Особенности строения и физиологии нейрона. Строение и свойства
синапса:
1.1.Физиология нейрона. Классификация нейронов. Особенности
возбуждения и торможения нейронов.
1.2. Нейроглия, функции.
] .3. Синапсы в ЦНС; классификация, строение, свойства.
Строение мякотных и безмякотных волокон.
Классификация нервных волокон.
Свойства нервных волокон. Законы проведения возбуждения в
нервных волокнах.
Механизм проведения возбуждения в мякотных и безмякотных
нервных волокнах.
2. Строение и физиология продолговатого мозга.

Содержимое работы - 1 файл

Контрольная работа.doc

— 255.50 Кб (Скачать файл)

 Этот  комплекс процессов, объединяемых под  общим названием «механизм электрической  возбудимости», является яркой функциональной характеристикой нервной клетки. Возможность направленного распространения  нервного импульса обеспечивается наличием у нервной клетки ветвящихся отростков, нередко простирающихся на значительные расстояния от ее сомы и обладающих в области своих окончаний механизмом передачи сигнала через межклеточную щель на последующие клетки.

  Применение  микроэлектродной техники позволило выполнить тонкие измерения, характеризующие основные электрофизиологические характеристики нервных клеток [Костюк, Крышталь, 1981; Окс, 1974; Ходоров, 1974]. Измерения показали, что каждая нервная клетка имеет отрицательный заряд, величина которого равна -40 – -65 мВ. Главное отличие нервной клетки от любой другой заключается в том, что она способна быстро изменять величину заряда вплоть до противоположного. Критический уровень деполяризации нейрона, при достижении которого возникает быстрый разряд, называется порогом генерации потенциала действия (ПД). Длительность потенциала действия различна у позвоночных и беспозвоночных животных – у беспозвоночных она равна 0,1 мс, а у беспозвоночных 1–2 мс. Серия потенциалов действия, распределенных во времени, является основой для пространственно-временного кодирования.

  Внешняя мембрана нейронов чувствительна к  действию специальных веществ, которые  выделяются из пресинаптической терминали  – к нейромедиаторам. В настоящее  время идентифицировано около 100 веществ, которые выполняют эту функцию. На внешней стороне мембраны расположены специализированные белковые молекулы – рецепторы, которые и взаимодействуют с нейромедиатором. В результате происходит открытие каналов специфической ионной проницаемости – только определенные ионы могут массированно проходить в клетку после действия медиатора. Развивается локальная деполяризация или гиперполяризация мембраны, которая называется постсинаптическим потенциалом (ПСП). ПСП могут быть возбудительными (ВПСП) и тормозными (ТПСП). Амплитуда ПСП может достигать 20 мВ. 

2.5. Пейсмекер 

  Один  из удивительных видов электрической  активности нейронов, регистрируемой внутриклеточным микроэлектродом, – это пейсмекерные потенциалы. А. Арванитаки и Н. Халазонитис [Arvanitaki, Chalazonitis, 1955] впервые описали осциллирующие потенциалы нервной клетки, не связанные с поступлением к ней синаптических влияний. Эти колебания в ряде случаев могут приобретать такой размах, что превышают критический уровень потенциала, необходимый для активации механизма электрической возбудимости. Наличие в соме клетки таких волн мембранного потенциала было обнаружено на нейронах моллюсков. Они были расценены как проявление спонтанной, или ауторитмической активности, имеющей эндогенное происхождение [Alving, 1968].

  Аналогичные ритмические колебания были затем  описаны и во многих других типах  нейронов. Способность к длительной ритмической активности сохраняется  у некоторых клеток в течение  длительного времени после полного  их выделения [Chen et al., 1971; Греченко, Соколов, 1986]. Следовательно, в ее основе действительно лежат эндогенные процессы, приводящие к периодическому изменению ионной проницаемости поверхностной мембраны. Важную роль играют изменения ионной проницаемости мембраны под действием некоторых цитоплазматических факторов, например системы обмена циклических нуклеотидов. Изменения активности этой системы при действии на соматическую мембрану некоторых гормонов или других внесинаптических химических влияний могут модулировать ритмическую активность клетки (эндогенная модуляция).

  Запускать генерацию колебаний мембранного  потенциала могут синаптические  и внесинаптические влияния. Л. Тауц и Г.М. Гершенфельд [Tauc, Gerschenfeld, 1960] обнаружили, что соматическая мембрана нейронов моллюсков, не имеющая на своей поверхности синаптических окончаний, обладает высокой чувствительностью к медиаторным веществам и, следовательно, имеет молекулярные хемоуправляемые структуры, свойственные постсинаптической мембране. Наличие внесинаптической рецепции показывает возможность модуляции пейсмекерной активности диффузным действием выделяющихся медиаторных веществ.

  Сложившаяся концепция о двух типах мембранных структур – электровозбудимой и  электроневозбудимой, но химически  возбудимой, заложила основу представлений о нейроне как пороговом устройстве, обладающем свойством суммации возбуждающих и тормозных синаптических потенциалов. Принципиально новое, что вносит эндогенный пейсмекерный потенциал в функционирование нейрона, заключается в следующем: пейсмекерный потенциал превращает нейрон из сумматора синаптических потенциалов в генератор. Представление о нейроне как управляемом генераторе заставляет по-новому взглянуть на организацию многих функций нейрона.

  Пейсмекерными потенциалами в собственном смысле этого слова называют близкие к синусоидальным колебания частотой 0,1–10 Гц и амплитудой 5–10 мВ. Именно эта категория эндогенных потенциалов, связанных с активным транспортом ионов, образует механизм внутреннего генератора нейрона, обеспечивающего периодическое достижение порога генерации ПД в отсутствие внешнего источника возбуждения. В самом общем виде нейрон состоит из электровозбудимой мембраны, химически возбудимой мембраны и локуса генерации пейсмекерной активности. Именно пейсмекерный потенциал, взаимодействующий с хемовозбудимой и электровозбудимой мембраной, делает нейрон устройством со «встроенным» управляемым генератором [Bullock, 1984].

  Если  локальный потенциал является частным  случаем механизма генерации  ПД, то пейсмекерный потенциал принадлежит к особому классу потенциалов – электрогенному эффекту активного транспорта ионов. Особенности ионных механизмов электрической возбудимости соматической мембраны лежат в основе важных свойств нервной клетки, в первую очередь ее способности генерировать ритмические разряды нервных импульсов. Электрогенный эффект активного транспорта возникает в результате несбалансированного переноса ионов в разных направлениях. Широко известен гиперполяризационный постоянный потенциал как результат активного вывода ионов натрия, суммирующийся потенциалом Нернста [Ходоров, 1974]. Дополнительное включение активного насоса ионов натрия создает фазичекие медленные волны гиперполяризации (негативные отклонения от уровня мембранного потенциала покоя), обычно возникающие вслед за высокочастотной группой ПД, которая приводит к избыточному накоплению натрия в нейроне.

  Несомненно, что некоторые из компонентов  механизма электрической возбудимости соматической мембраны, а именно электроуправляемые кальциевые каналы, вместе с тем  являются фактором, сопрягающим мембранную активность с цитоплазматическими процессами, в частности с процессами протоплазматического транспорта и нервной трофики. Детальное выяснение этого важного вопроса требует дальнейшего экспериментального изучения.

  Пейсмекерный механизм, являясь эндогенным по происхождению, может активироваться и инактивироваться на длительное время в результате афферентных воздействий на нейрон. Пластические реакции нейрона могут обеспечиваться изменениями эффективности синаптической передачи и возбудимости пейсмекерного механизма (Соколов, Тавкхелидзе, 1975).

  Пейсмекерный  потенциал является компактным способом передачи внутринейронной генетической информации. Приводя к генерации  ПД, он обеспечивает возможность выхода эндогенных сигналов на другие нейроны, в том числе и эффекторные, обеспечивающие реакцию [Bullock, 1984]. Тот факт, что генетическая программа включает звено управления пейсмекерным потенциалом, позволяет нейрону реализовывать последовательность своих генетических программ. Наконец пейсмекерный потенциал в той или иной степени может подвергаться синаптическим влияниям. Этот путь позволяет интегрировать генетические программы с текущей активностью, обеспечивая гибкое управление последовательными программами. Пластические изменения пейсмекерного потенциала еще больше расширяют возможность приспособления наследственно фиксированных форм к потребностям организма. Пластические изменения развиваются в этом случае не в геноме, а на пути выхода наследственной программы на реализацию (на уровне генерации ПД).

 

1.2.    Нейроглия,  функции.

ГЛИЯ-МОРФОЛОГИЯ И ФУНКЦИЯ

 

  Головной  мозг человека состоит из сотен миллиардов клеток, причем нервные клетки (нейроны) не составляют большинство. Большая  часть объема нервной ткани (до 9/10 в некоторых областях мозга) занята клетками глии (от греч. склеивать). Дело в том, что нейрон выполняет в нашем организме гиганскую очень тонкую и трудную работу, для чего неоходимо освободить такую клетку от будничной деятельности, связанной с питанием, удалением шлаков, защитой от механических повреждений и т.д. – это обеспечивается другими, обслуживающими клетками, т.е. клетками глии (рис. 2.2.). В головном мозге выделяются три типа клеток глии: микроглию, олигодендроглию и астроглию, каждая из которых обеспечивает только ей предназначенную функцию. Клетки микроглии участвут в образовании мозговых оболочек, олигодендроглии – в образовании оболочек (милеиновх чехлов) вокруг отдельных отростков нервных клеток. Миелиновые оболочки вокруг периферических нервных волокон образуются специальными гниальными клетками – шванновскими клетками. Астроциты находятся вокруг нейронов, обеспечивая их механическую защиту, а кроме того, доставляют в нейрон питательные вещества и убирают шлаки. Клетки глии обеспечивают также электическуюизоляцию отдельных нейронов от воздействия других нейронов. Важной особенностью клеток глии является то, что в отличии от нейронов они сохраняют способность делиться на протяжении всей своей жизни. Это деление в некоторых случаях приводит к опухолевым заболеваниям головного мозга человека. Нервная клетка настолько специализирована, что утеряла способность к делению. Таким образом, нейроны нашего мозга, однажды образовавшись из клеток-предшественников (нейробластов), живут с нами всю нашу жизнь. На этом длительном пути мы только теряем нейроны нашего мозга.  
 

] .3.    Синапсы  в ЦНС; классификация, строение, свойства.

СИНАПС

  Как передается возбуждение от одного нейрона  другому или от нейрона, например, на мышечное волокно? Этой проблемой  интересуются не только профессиональные нейробиологи, но и врачи, особенно фармакологи. Знание биологических механизмов необходимо для лечения некоторых заболеваний, а также для создания новых лекарств и препаратов. Дело в том, что одними из основных мест воздействия этих веществ на организм человека являются места передачи возбуждения с одного нейрона на другой (или на другую клетку, например клетку сердечной мышцы, стенки сосудов и пр.). Отросток нейрона аксон направляется к другому нейрону и образует на нем контакт, который называют синапсом (в переводе с греческого - контакт; см. рис. 2.3). Именно синапс хранит многие тайны мозга. Нарушение этого контакта, например, веществами, блокирующими его работу, приводит к тяжелейшим последствиям для человека. Это место приложения действия наркотиков. Примеры будут приведены ниже, а сейчас рассмотрим, как устроен и как работает синапс.

  Трудности этого исследования определяются тем, что сам синапс очень маленький (его диаметр не более 1 мкм). Один нейрон получает такие контакты, как  правило, от нескольких тысяч (3 - 10 тыс.) других нейронов. Каждый синапс надежно закрыт специальными клетками глии, поэтому исследовать его очень непросто. На рис. 2.12 показана схема синапса, как это представляет себе современная наука. Несмотря на свою миниатюрность, он устроен весьма сложно. Одним из его основных компонентов являются пузырьки, которые находятся внутри синапса. Эти пузырьки содержат биологически очень активное вещество, которое называется нейротрансмиттером, или медиатором (передатчиком). 

  

  Вспомним, что нервный импульс (возбуждение) с огромной скоростью продвигается по волокну и подходит к синапсу. Этот потенциал действия вызывает деполяризацию  мембраны синапса (рис. 2.13), однако это  не приводит к генерации нового возбуждения (потенциала действия), а вызывает открывание специальных ионных каналов, с которыми мы еще не знакомы. Эти каналы пропускают ионы кальция внутрь синапса. Ионы кальция играют очень большую роль в деятельности организма. Специальная железа внутренней секреции - паращитовидная (она находится поверх щитовидной железы) регулирует содержание кальция в организме. Многие заболевания связаны с нарушением обмена кальция в организме. Например, его недостаток приводит к рахиту у маленьких детей.

 
 

  Каким образом кальций участвует в работе синапса? Попадая в цитоплазму синаптического окончания, кальций входит в связь с белками, образующими оболочку пузырьков, в которых хранится медиатор. В конечном итоге мембраны синаптических пузырьков сжимаются, выталкивая свое содержимое в синаптическую щель. Этот процесс очень напоминает сокращение мышечного волокна в мышце, во всяком случае, эти два процесса имеют одинаковый механизм на молекулярном уровне. Таким образом, связывание кальция белками оболочки пузырька приводит к ее сокращению, и содержание пузырька впрыскивается (экзоцитоз) в щель, которая отделяет мембрану одного нейрона от мембраны другого. Эта щель называется синоптической щелью. Из описания должно быть ясно, что возбуждение (электрический потенциал действия) нейрона в синапсе превращается из электрического импульса в импульс химический. Другими словами, каждое возбуждение нейрона сопровождается выбросом в окончании его аксона порции биологически активного вещества - медиатора. Далее молекулы медиатора связываются с специальными белковыми молекулами, которые находятся на мембране другого нейрона. Эти молекулы называются рецепторами. Рецепторы устроены уникально и связывают только один тип молекул. В некоторых описаниях указывается, что они подходят, как «ключ к замку» (ключ подходит только к своему замку).

Информация о работе Строение и физиология продолговатого мозга