Углеводы

Автор работы: Пользователь скрыл имя, 06 Декабря 2011 в 14:12, курсовая работа

Краткое описание

Ежедневно сталкиваясь с множеством бытовых предметов, продуктов питания, природных объектов, продуктов промышленного производства, мы не задумываемся о том, что все вокруг есть и индивидуальные химические вещества или совокупность этих веществ. Любое вещество обладает собственной структурой и свойствами. Человек с момента своего появления на Земле употреблял растительную пищу, содержащую крахмал, фрукты и овощи, содержащие глюкозу, сахарозу и другие углеводы, использовал для своих нужд древесину и другие растительные объекты, состоящие главным образом из другого природного полисахарида — целлюлозы. И только в начале XIX в. стало возможным изучение химического состава природных высокомолекулярных веществ, строения их молекул. В этой области были сделаны важнейшие открытия.

Содержание работы

ПЛАН:

Глава 1 Углеводы, их классификация и значение.
1.1. Содержание углеводов в клетке и их классификация.
1.2. Состав и строение моносахаридов на примере глюкозы.
1.3. Физические и химические свойства глюкозы.
1.4. Применение углеводов.
Глава 2. Физиологическое значение углеводов
2.1. Углеводы и углеводный обмен.
2.2. Значение жиров, углеводов и минеральных веществ в питании человека.
2.3. Нормы этих компонентов пищи и источники их поступления в организм человека
Глава 3. Углеводы: от простых до сложных, где содержатся углеводы в продуктах питания
3.1. Простые углеводы
3.2. Сложные углеводы
3.3. Обмен углеводов
Глава 4. Химические свойства углеводов.
4.1. Реакции углеводов
4.2. Образование простых эфиров
Глава 5. Роль углеводов в медицине, ветеринарии, питании человека.
5.1. Применение углеводов.
5.2. Применение углеводов в парентеральном питании
5.3. Использование углеводов при диетическом питании
Заключение
Список использованной литературы.
Приложения.

Содержимое работы - 1 файл

план курсовой работы.doc

— 947.00 Кб (Скачать файл)

       Один  из наиболее важных углеводов —  глюкоза является не только основным источником энергии, но и предшественником пентоз, уроновых кислот и фосфорных эфиров гексоз. Глюкоза образуется из гликогена и углеводов пищи — сахарозы, лактозы, крахмала, декстринов. Кроме того, глюкоза синтезируется в организме из различных неуглеводных предшественников. Этот процесс носит название глюконеогенеза и играет важную роль в поддержании гомеостаза. В процессе глюконеогенеза участвует множество ферментов и ферментных систем, локализованных в различных клеточных органеллах. Глюконеогенез происходит главным образом в печени и почках.

       Существуют  два пути расщепления глюкозы  в организме: гликолиз (фосфоролитический  путь, путь Эмбдена — Мейергофа  — Парнаса) и пентозофосфатный путь (пентозный путь, гексозомонофосфатный шунт). Схематически пентозофосфатный путь выглядит так: глюкозо-6-фосфат ® 6-фосфатглюконолактон ® рибулозо-5-фосфат ® рибозо-5-фосфат. В ходе пентозофосфатного пути происходит последовательное отщепление от углеродной цепи сахара по одному атому углерода в виде СО2. В то время как гликолиз играет важную роль не только в энергетическом обмене, но и в образовании промежуточных продуктов синтеза липидов, пентозофосфатный путь приводит к образованию рибозы и дезоксирибозы, необходимых для синтеза нуклеиновых кислот (ряда коферментов).

       Синтез  и распад гликогена. В синтезе  гликогена — главного резервного полисахарида человека и высших животных — участвуют два фермента: гликогенсинтетаза (уридиндифосфат (УДФ) глюкоза: гликоген-4a-глюкозилтрансфераза), катализирующая образование полисахаридных цепей, и ветвящий фермент, образующий в молекулах гликогена так называемые связи ветвлении. Для синтеза гликогена необходимы так называемые затравки. Их роль могут выполнять либо глюкозиды с различной степенью полимеризации, либо белковые предшественники, к которым при участии особого фермента глюкопротеинсинтетазы присоединяются глюкозные остатки уридиндифосфатглюкозы (УДФ-глюкозы).

       Распад  гликогена осуществляется фосфоролитическим (гликогенолиз) или гидролитическим  путями. Гликогенолиз представляет собой  каскадный процесс, в котором  участвует ряд ферментов фосфорилазной системы — протеинкиназа, киназа фосфорилазы b, фосфорилаза b, фосфорилаза а, амило-1,6-глюкозидаза, глюкозо-6-фосфатаза. В печени в результате гликогенолиза образуется глюкоза из глюкозо-6-фосфата благодаря действию на него глюкозо-6-фосфатазы, отсутствующей в мышцах, где превращения глюкозо-6-фосфата приводят к образованию молочной кислоты (лактата). Гидролитический (амилолитический) распад гликогена обусловлен действием ряда ферментов, называемых амилазами (a-глюкозидазами). Известны a-, b- и g-амилазы. a-Глюкозидазы в зависимости от локализации в клетке делят на кислые (лизосомные) и нейтральные.

       Синтез  и распад углеводсодержащих соединений. Синтез сложных сахаров и их производных  происходит с помощью специфических  гликозилтрансфераз, катализирующих перенос моносахаридов от доноров — различных гликозилнуклеотидов или липидных переносчиков к субстратам-акцепторам, которыми могут быть углеводный остаток, полипептид или липид в зависимости от специфичности трансфераз. Нуклеотидным остатком является обычно дифосфонуклеозид.

       В организме человека и животных много  ферментов, ответственных за превращение  одних углеводов в другие, как  в процессах гликолиза и глюконеогенеза, так и в отдельных звеньях  пентозофосфатного пути.

       Ферментативное расщепление углеводсодержащих соединений происходит в основном гидролитическим путем с помощью гликозидаз, отщепляющих углеводные остатки (экзогликозидазы) или олигосахаридные фрагменты (эндогликозидазы) от соответствующих гликоконъюгатов. Гликозидазы являются чрезвычайно специфическими ферментами. В зависимости от природы моносахарида, конфигурации его молекулы (их D или L-изомеров) и типа гидролизуемой связи (a или b) различают a—D-маннозидазы, a—L-фукозидазы, ×bD-галактозидазы и т.д. Гликозидазы локализованы в различных клеточных органеллах; многие из них локализованы в лизосомах. Лизосомные (кислые) гликозидазы отличаются от нейтральных не только локализацией в клетках, оптимальным для их действия значением рН и молекулярной массой, но и электрофоретической подвижностью и рядом других физико-химических свойств.

       Гликозидазы играют важную роль в различных биологических  процессах; они могут, например, оказывать  влияние на специфический рост трансформированных клеток, на взаимодействие клеток с  вирусами и др.

       Имеются данные о возможности неферментативного  гликозилирования белков in vivo, например гемоглобина, белков хрусталика, коллагена. Есть сведения, что неферментативное гликозилирование (гликирование) играет важную патогенетическую роль при некоторых  заболеваниях (сахарном диабете, галактоземии и др.).

       Переваривание углеводов начинается в ротовой  полости при участии гидролитических  ферментов слюны. Гидролиз ферментами слюны продолжается в желудке (сбраживание углеводов пищевого комка предотвращается соляной кислотой желудочного сока). В двенадцатиперстной кишке полисахариды пищи (крахмал, гликоген и др.) и сахара (олиго - и дисахариды) расщепляются при участии a-глюкозидаз и других гликозидаз сока поджелудочной железы до моносахаридов, которые всасываются в тонкой кишке в кровь. Скорость всасывания углеводов различна, быстрее всасываются глюкоза и галактоза, медленнее — фруктоза, манноза и другие сахара.

       Транспорт углеводов через эпителиальные  клетки кишечника и поступление  в клетки периферических тканей осуществляются с помощью особых транспортных систем, функция которых заключается и переносе молекул сахаров через клеточные мембраны. Существуют особые белки-переносчики — пермеазы (транслоказы), специфические по отношению к сахарам и их производным. Транспорт углеводов может быть пассивным и активным. При пассивном транспорте перенос углеводов осуществляется по направлению градиента концентрации, так что равновесие достигается тогда, когда концентрации сахара в межклеточном веществе или межклеточной жидкости и внутри клеток выравниваются. Пассивный транспорт сахаров характерен для эритроцитов человека. При активном транспорте углеводы могут накапливаться в клетках и концентрация их внутри клеток становится выше, чем в окружающей клетки жидкости. Предполагают, что активное поглощение сахаров клетками отличается от пассивного тем, что последнее является Na+-независимым процессом. В организме человека и животных активный транспорт углеводов происходит главным образом в клетках эпителия слизистой оболочки кишечника и в извитых канальцах (проксимальных отделах нефрона) почек.

       Регуляция углеводного обмена осуществляется при участии очень сложных  механизмов, которые могут оказывать  влияние на индуцирование или  подавление синтеза различных ферментов углеводного обмена либо способствовать активации или торможению их действия. Инсулин, катехоламины, глюкагон, соматотропный и стероидные гормоны оказывают различное, но очень выраженное влияние на разные процессы углеводного обмена. Так, например, инсулин способствует накоплению в печени и мышцах гликогена, активируя фермент гликогенсинтетазу, и подавляет гликогенолиз и глюконеогенез. Антагонист инсулина — глюкагон стимулирует гликогенолиз. Адреналин, стимулируя действие аденилатциклазы, оказывает влияние на весь каскад реакций фосфоролиза. Гонадотропные гормоны активируют гликогенолиз в плаценте. Глюкокортикоидные гормоны стимулируют процесс глюконеогенеза. Соматотропный гормон оказывает влияние на активность ферментов пентозофосфатного пути и снижает утилизацию глюкозы периферическими тканями. В регуляции глюконеогенеза принимают участие ацетил-КоА и восстановленный никотинамидадениндинуклеотид. Повышение содержания жирных кислот в плазме крови тормозит активность ключевых ферментов гликолиза. В регуляции ферментативных реакций углеводного обмена важную цель играют ионы Са2+, непосредственно или при участии гормонов, часто в связи с особым Са2+-связывающим белком — калмодулином. В регуляции активности многих ферментов большое значение имеют процессы их фосфорилирования — дефосфорилирования. В организме существует прямая связь между У. о. и обменом белков, липидов и минеральных веществ.

       Увеличение  содержания глюкозы в крови —  гипергликемия может происходить  вследствие чрезмерно интенсивного глюконеогенеза либо в результате понижения способности утилизации глюкозы тканями, например при нарушении процессов ее транспорта через клеточные мембраны. Понижение содержания глюкозы в крови — гипогликемия — может являться симптомом различных болезней и патологических состояний, причем особенно уязвимым в этом отношении является мозг: следствием гипогликемии могут быть необратимые нарушения его функций.

       Генетически обусловленные дефекты ферментов углеводного обмена являются причиной многих наследственных болезней. Примером генетически обусловленного наследственного нарушения обмена моносахаридов может служить галактоземия, развивающаяся в результате дефекта синтеза фермента галактозо-1-фосфатуридилтрансферазы. Признаки галактоземии отмечают также при генетическом дефекте УДФ-глюкоза-4-эпимеразы. Характерными признаками галактоземии являются гипогликемия, галактозурия, появление и накопление в крови наряду с галактозой галактозо-1-фосфата, а также снижение массы тела, жировая дистрофия и цирроз печени, желтуха, катаракта, развивающаяся в раннем возрасте, задержка психомоторного развития. При тяжелой форме галактоземии дети часто погибают ни первом году жизни вследствие нарушений функций печени или пониженной сопротивляемости инфекциям.

       Примером  наследственной непереносимости моносахаридов  является непереносимость фруктозы, которая вызывается генетическим дефектом фруктозофосфатальдолазы и в ряде случаев — снижением активности Фруктоза-1,6-дифосфат-альдолазы. Болезнь характеризуется поражениями печени и почек. Для клинической картины характерны судороги, частая рвота, иногда коматозное состояние. Симптомы заболевания появляются в первые месяцы жизни при переводе детей на смешанное или искусственное питание. Нагрузка фруктозой вызывает резкую гипогликемию.

       Заболевания, вызванные дефектами в обмене олигосахаридов, в основном заключаются в нарушении расщепления и всасывания углеводов пищи, что происходит главным образом в тонкой кишке. Мальтоза и низкомолекулярные декстрины, образовавшиеся из крахмала и гликогена пищи под действием a-амилазы слюны и сока поджелудочной железы, лактоза молока и сахароза расщепляются дисахаридазами (мальтазой, лактазой и сахаразой) до соответствующих моносахаридов в основном в микроворсинках слизистой оболочки тонкой кишки, а затем, если процесс транспорта моносахаридов не нарушен, происходит их всасывание. Отсутствие или снижение активности дисахаридаз к слизистой оболочке тонкой кишки служит главной причиной непереносимости соответствующих дисахаридов, что часто приводит к поражению печени и почек, является причиной диареи, метеоризма. Особенно тяжелыми симптомами характеризуется наследственная непереносимость лактозы, обнаруживающаяся обычно с самого рождения ребенка. Для диагностики непереносимости сахаров применяют обычно нагрузочные пробы с введением натощак per os углевода, непереносимость которого подозревают. Более точный диагноз может быть поставлен путем биопсии слизистой оболочки кишечника и определения в полученном материале активности дисахаридаз. Лечение состоит в исключении из пищи продуктов, содержащих соответствующий дисахарид. Больший эффект наблюдают, однако, при назначении ферментных препаратов, что позволяет таким больным употреблять обычную пищу. Например, в случае недостаточности лактазы, содержащий ее ферментный препарат, желательно добавлять в молоко перед употреблением его в пищу. Правильный диагноз заболеваний, вызванных недостаточностью дисахаридаз, крайне важен. Наиболее частой диагностической ошибкой в этих случаях являются установление ложного диагноза дизентерии, других кишечных инфекций, и лечение антибиотиками, приводящее к быстрому ухудшению состояния больных детей и тяжелым последствиям.

       Заболевания, вызванные нарушением обмена гликогена, составляют группу наследственных энзимопатий, объединенных под названием гликогенозов. Гликогенозы характеризуются избыточным накоплением гликогена в клетках, которое может также сопровождаться изменением структуры молекул этого полисахарида. Гликогенозы относят к так называемым болезням накопления. Гликогенозы (гликогенная болезнь) наследуются по аутосомно-рецессивному или сцепленному с полом типу. Почти полное отсутствие в клетках гликогена отмечают при агликогенозе, причиной которого является полное отсутствие или сниженная активность гликогенсинтетазы печени.

       Заболевания, вызванные нарушением обмена различных гликоконъюгатов, в большинстве случаев являются следствием врожденных нарушений распада гликолипидов, гликопротеинов или гликозаминогликанов (мукополисахаридов) в различных органах. Они также являются болезнями накопления. В зависимости от того, какое соединение аномально накапливается в организме, различают гликолипидозы, гликопротеиноды, мукополисахаридозы. Многие лизосомные гликозидазы, дефект которых лежит в основе наследственных нарушений углеводного обмена, существуют в виде различных форм, так называемых множественных форм, или изоферментов. Заболевание может быть вызвано дефектом какого-либо одного изофермента. Так, например. болезнь Тея — Сакса — следствие дефекта формы AN-ацетилгексозаминидазы (гексозаминидазы А), в то время как дефект форм А и В этого фермента приводит к болезни Сандхоффа.

       Большинство болезней накопления протекает крайне тяжело, многие из них пока неизлечимы. Клиническая картина при различных  болезнях накопления может быть сходной, и, напротив, одно и то же заболевание  может проявляться по-разному у разных больных. Поэтому необходимо в каждом случае устанавливать ферментный дефект, выявляемый большей частью в лейкоцитах и фибробластах кожи больных. В качестве субстратов применяют гликоконьюгаты или различные синтетические гликозиды. При различных мукополисахаридозах, а также при некоторых других болезнях накопления (например, при маннозидозе) выводятся с мочой в значительных количествах различающиеся по структуре олигосахариды. Выделение этих соединений из мочи и их идентификацию проводят с целью диагностики болезней накопления. Определение активности фермента в культивируемых клетках, выделенных из амниотической жидкости, получаемой при амниоцентезе при подозрении на болезнь накопления, позволяет ставить пренатальный диагноз.

Информация о работе Углеводы