Шпаргалка по "Ботанике"

Автор работы: Пользователь скрыл имя, 10 Декабря 2011 в 14:47, шпаргалка

Краткое описание

Работа содержит 33 вопроса и ответа на них по "Ботанике"

Содержимое работы - 1 файл

ботаника.зачет.docx

— 47.72 Кб (Скачать файл)
  1. Клетка — структурная и функциональная единица жизни.

    Клетка — это элементарная живая система, основа строения и жизнедеятельности всех живых организмов.

    Живые системы - особый этап развития и форма движения материи. Их основные свойства: специфический химический состав, пространственно-временная организация, обмен веществ, энергии и информации, саморегуляция и гомеостаз, самовоспроизведение, наследственность, изменчивость, развитие, раздражимость, движение. Живая система - открытая, саморегулирующаяся, самовоспроизводящаяся система.

    Неживая система – не машина.  Машина есть особая неживая искусственная система, копирующая многие черты живой системы,  а потому нуждающаяся в управлении, подпитке и т.д. Робот – предел сложности неживой искусственной системы, который имитирует самостоятельную деятельность. 

  1. Ядро— это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК). В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК.

    Строение. Все клеточные формы жизни на Земле можно разделить на два надцарства на основании строения составляющих их клеток:

    прокариоты (доядерные) — более простые по строению, по-видимому, они возникли в процессе эволюции раньше;

    эукариоты (ядерные) — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

    Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам.

    Содержимое клетки отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в  которой расположены различные  органоиды и клеточные включения, а также генетический материал в  виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

    Функции.

      Хим.состав. Для химического состава ядра характерно большое количество белков. Они представлены двумя группами. Это простые белки и дезоксирибонуклеопротеиды, состоящие из равного количества дезоксирибонуклеиновой кислоты (ДНК) и белков-гистонов. В небольшом количестве в состав клеточного ядра входит и рибонуклеиновая кислота (РНК).Нуклеиновые кислоты. ДНК, а также РНК, о которой говорилось при описании рибосом, принадлежит важнейшая роль в явлениях наследственности и жизнедеятельности всех организмов. Нуклеиновые кислоты впервые были обнаружены швейцарским биохимиком Мишером в 1869 г. в ядрах животных клеток, откуда они и получили свое название (от лат. nucleus — ядро). Но биологическое значение нуклеиновых кислот в полной мере было установлено лишь в последние 20—25 лет, когда удалось выяснить их сложную биохимическую природу.Обе нуклеиновые кислоты — биологические полимеры, т. е. вещества, сложные молекулы которых состоят из более простых молекул — мономеров. ДНК и РНК различаются между собой по химическому составу, местонахождению в клетке и той биологической роли, которую они в ней выполняют.

   

  1. Цитопла́зма— внутренняя среда живой или умершей клетки, кроме ядра и вакуоли, ограниченная плазматической мембраной. Включает в себя гиалоплазму — основное прозрачное вещество цитоплазмы, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения.

    Цитоплазма – это жидкая среда клетки, заключенная между мембраной и ядром. Это обязательный органоид клетки. Цитоплазма представляет собой бесцветный, слизистый на ощупь, густой и прозрачный коллоидный раствор различных солей и органических веществ – цитозоль. Вода составляет 60-90% всей массы цитоплазмы, однако ее количество может меняться в зависимости от внешних условий и процессов, происходящих в клетке. Химический состав цитоплазмы очень сложный и постоянно изменяется. В зависимости от выполняемых функций каждая клетка имеет свой химический состав. Цитоплазма богата белками, количество которых составляет 10 – 20% а иногда 70% сухой массы. Цитоплазма находится в постоянном движении.

    Функции : Цитоплазма является средой для многочисленных реакций. Участвует в передвижении веществ. Поддерживает тургор клетки.

    В состав цитоплазмы входят все виды органических и неорганических веществ. В ней присутствуют также нерастворимые отходы обменных процессов и запасные питательные вещества. Основное вещество цитоплазмы — вода.

    Цитоплазма постоянно  движется, перетекает внутри живой  клетки, перемещая вместе с собой  различные вещества, включения и  органоиды. Это движение называется циклозом. В ней протекают все процессы обмена веществ.

    Цитоплазма способна к росту и воспроизведению и при частичном удалении может восстановиться. Однако нормально функционирует цитоплазма только в присутствии ядра. Без него долго существовать цитоплазма не может, так же как и ядро без цитоплазмы.

    Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур (компонентов) и  обеспечении их химического взаимодействия. 

  1. Аппарат Гольджи (комплекс Гольджи) — мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме.

    Строение

    Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям, и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединённых трубками стопок.

    Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках. 

  1. Эндоплазматическая сеть (ЭПС) — внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.

    Строение

    Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.

    Мембрана ЭПР  морфологически идентична оболочке клеточного ядра и составляет с ней  одно целое. Таким образом, полости  эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов против градиента концентрации. Нити, образующие эндоплазматический ретикулум, имеют в поперечнике 0,05—0,1 мкм (иногда до 0,3 мкм), толщина двухслойных мембран, образующих стенку канальцев, составляет около 50 ангстрем (5 нм, 0,005 мкм). Эти структуры содержат ненасыщенные фосфолипиды, а также некоторое количество холестерина и сфинголипидов. В их состав также входят белки.

    Функции эндоплазматического ретикулума

    При участии эндоплазматического ретикулума происходит трансляция и транспорт белков, синтез и транспорт липидов и стероидов. Для ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза). Эндоплазматический ретикулум содержит внутриклеточный запас кальция, который является, в частности, медиатором сокращения мышечной клетки. В клетках мышечных волокон расположена особая форма эндоплазматического ретикулума — саркоплазматическая сеть. 

  1. Рибосома – не простой органоид. Это крупный внутриклеточный ансамбль макромолекул, который отвечает в клетке трансляцию – процесс биосинтеза полипептидных цепей на матрице информационной РНК. В состав рибосомы входит собственная, рибосомальная РНК (РНК), а также белки.

    Состоят из большой и малой субъединиц.

    Функция - на рибосомах происходит синтез белка. 

  1. Митохондрия— двумембранная гранулярная или нитевидная органелла толщиной около 0,5 мкм.

    Основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии в синтезе молекул АТФ, который происходит за счёт движения электрона по электронно-транспортной цепи белков внутренней мембраны.

    Митохондрии имеют разнообразную  форму, могут быть в виде округлых, овальных, цилиндрических и палочковидных телец. Количество митохондрий в клетке зависит от функциональной активности клетки.

    Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

    Строение  митохондрии:

    1 — наружная  мембрана;

    2 — внутренняя  мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК 

  1. Хлоропла́сты — зелёные пластиды, которые встречаются в клетках растений и некоторых бактерий. С их помощью происходит фотосинтез. Хлоропласты содержат хлорофилл. Являются двумембранными органеллами[Пр. 1]. Под двойной мембраной имеются тилакоиды (мембранные образования, в которых находится электронтранспортная цепь хлоропластов). Тилакоиды высших растений группируются в граны, которые представляют собой стопки сплюснутых и тесно прижатых друг к другу тилакоидов, имеющих форму дисков. Соединяются граны с помощью ламелл. Пространство между оболочкой хлоропласта и тилакоидами называется стромой. В строме содержатся хлоропластные молекулы РНК, пластидная ДНК, рибосомы, крахмальные зёрна, а также ферменты цикла Кальвина.

    Ультраструктура хлоропласта:

    1. наружняя мембрана

    2. межмембранное  пространство

    3. внутренняя мембрана (1+2+3: оболочка)

    4. строма (жидкость)

    5. тилакоид с просветом (люменом) внутри

    6. мембрана тилакоида

    7. грана (стопка  тилакоидов)

    8. тилакоид (ламела)

    9. зерно крахмала

    10. рибосома

    11. пластидная ДНК

    12. плстоглобула (капля жира)

    ПИГМЕНТЫ  ХЛОРОПЛАСТОВ

    Хлорофилл заслуживает  особого внимания, потому что в  процессе фотосинтеза он является светопоглощающим пигментом, а также и потому, что создает доминирующую окраску земной поверхности. У некоторых декоративных деревьев и кустарников иногда бывают видны желтые пигменты-каротиноиды. Эти пигменты обнаруживаются и вследствие того, что условия становятся неблагоприятными для синтеза хлорофилла или его сохранения. Листья некоторых разновидностей древесных растений, например, темно-пунцовой формы бука европейского, клена дланевидного, имеют красную или пурпурную окраску из-за присутствия в клеточном соке (а не в пластидах) антоцианов. Многие другие деревья вырабатывают антоцианы осенью. (Образование осенней окраски листьев будет рассмотрено в главе 7). Хлорофилл и каротиноиды встречаются, кроме листовых пластинок, во многих тканях, в том числе в черешках, почках, семядолях, в коровой паренхиме молодых побегов и в феллодерме более старых стеблей некоторых видов. Обычно хлоропласты редко встречаются в эпидермальных клетках, за исключением замыкающих клеток устьиц. Изредка они развиваются в корнях, выставленных на свет.

    Фотосинтез -процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества 

  1. Хромопласты -окрашенные внутриклеточные органеллы растительных клеток, тип пластид. Х. бывают шарообразными, веретеновидными, серповидными и неправильно-многоугольными.

    Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

    Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

    Пигменты  локализуются:

    в пластоглобулах;

    трубчатых или  нитевидных белковых структурах;

    образуют кристаллы.

    Известно свыше 50 видов каротиноидов (например, виолоксантин у анютиных глазок, ликопин в помидорах, бета-каротин в моркови).

    Хромопласты первично нефункциональны. Их вторичная роль состоит в том, что они создают  зрительную приманку для животных и  тем самым способствуют опылению цветков и распространению плодов и семян. 

  1. Лейкопла́сты— бесцветные сферические пластиды в клетках растений

    Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ.

    Строение  пластид: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли. 

  1. КЛЕТОЧНАЯ ОБОЛОЧКА

     растений, клеточная  стенка ,структурное образование на периферии клетки (за пределами клеточной мембраны — плазмалеммы), придающее ей прочность, сохраняюшее её форму и защищающее протопласт.

Информация о работе Шпаргалка по "Ботанике"