Химический анализ, как метод получения информации о загрязнении окружающей среды

Автор работы: Пользователь скрыл имя, 04 Декабря 2011 в 18:59, отчет по практике

Краткое описание

В данном отчете рассмотрены такие понятия как химический анализ, аналитический сигнал, качественный и количественный методы анализа, физический и химический методы данного анализа, приведена методика химического анализа, дана классификация физических и химических методов.

Содержание работы

Введение 2
1. Химический анализ 3
2. Методика химического анализа 5
3. Качественный и количественный анализы 6
4. Физические и химические методы 10
Заключение 31
Список использованных источников 32

Содержимое работы - 1 файл

Иванова Мария-химический анализ.doc

— 294.00 Кб (Скачать файл)

143,5 : 108 = 1,196 : x

х = 0,900

т. е. что  взятое количество сплава содержит 0,900 грамм серебра. Отнимая этот вес  от данного количества вещества, находим  из разности количество меди, если только нежелательно делать прямого ее определения. Из этого по возможности сжатого описания ясно, насколько кропотливую и требующую терпения работу представляет весовой анализ, причем еще выбран был наиболее простой пример. Неоцененна поэтому вся выгода объемного анализ, который во многих случаях может заменять весовой; при этом зачастую можно окончить работу в несколько минут, тогда как при весовом анализ на это потребовалось бы много часов и даже дней, и при всем том объемный анализ дает по меньшей мере столь же точные результаты, как и весовой. При умелой работе и правильном применении объемный анализ позволяет определять столь малые количества вещества, которые не могут быть показаны лучшими химическими весами, и, наконец, целый ряд источников ошибок, неизбежных при весовом анализ, здесь не имеет места. [3]

 

     4. Физические и химические методы. 

     На  сегодняшний день все методы химического анализа построены либо на химическом  приеме сравнения определяемой концентрации с ее единицей измерения,  либо на физическом приеме:

  • химический приём реализован в способе сравнения с эталоном единицы величины количества компонента, используя законы сохранения массы или количества компонента при химических взаимодействиях. Химические взаимодействия основаны на химических свойствах химических соединений. Для определения искомого компонента в пробе вещества проводят химическую реакцию, отвечающую определенным требованиям, и измеряют массу или объём компонентов, участвующих в данной химической реакции. Количественные отношения получают, записывая закон сохранения массы или количества эквивалентов компонента для данной химической реакции;
  • физический приём реализован в способе сравнения с эталоном единицы величины количества компонента путем измерения физического свойства компонента,  зависящего от его содержания в пробе вещества. Экспериментально устанавливают функциональную зависимость «Интенсивность свойства – содержание компонента в пробе» путем градуировки средства измерения этого физического свойства по определяемому компоненту. Количественные отношения получают из градуировочного графика, построенного в координатах: «интенсивность физического свойства - концентрация определяемого компонента».

     Химический  анализ можно разделить на две  группы методов – на химические и физические. [4]

     Химические методы, основанные на химических реакциях определяемых веществ в растворах:

     Объемный анализ (титрованный анализ, или титрование) основан на определении того количества реактива, которое необходимо для переведения всего количества взятого тела в соединение постоянного состава; такое определение производится не посредством взвешивания, а при помощи измерения объема реактива, представляющего раствор определенного содержания, или титра. (Титром называется вес вещества, заключающегося в одном см3 раствора). Так как приготовление таких растворов требует большой тщательности, то в тех случаях, когда требуется всего лишь одно или несколько однородных определений, объемным методом в большинстве случаев не пользуются; но там, где приходится делать массу однородных или сходных определений, объемный анализ имеет широкое применение, так как титрованные растворы можно готовить и оставлять про запас в каких угодно больших количествах и так как часто один и тот же раствор может идти для весьма различных определений. Если какой-нибудь определенный объем, например 100 см3 сильно разбавленной водою серной кислоты, содержит 98 весовых частей чистой серной кислоты (H2SO4), то такой объем раствора нейтрализует 34 тех же весовых частей аммиака, 28 весовых частей азота органических соединений, переведенного в аммиак, 94,2 весовых частей окиси калия, 112,4 весовых частей гидрата окиси калия, 138,4 весовых частей углекислого калия, 62 весовых частей окиси натрия, 80 весовых частей едкого натра, 106 весовых частей углекислого натра и т. д. Приготовив, таким образом, раз навсегда большое количество серной кислоты определенной крепости (титра), можно производить массу различных определений, пока не выйдет весь запас. Но при этом следует иметь в виду, что все сделанные с таким раствором определения будут неверны, если при изготовлении раствора вкрадется малейшая ошибка. Поэтому титрованные жидкости готовят таким образом, что отвешивают подходящее количество нужного реактива, разбавляют его известным количеством воды и окончательно устанавливают содержание (титр) раствора посредством целого ряда друг друга контролирующих весовых определений. Смешивают, например, 860 г серной кислоты с 30 л воды, причем и то и другое отвешивается лишь приблизительно, берут отсюда посредством пипетки три порции по 50 см3 каждая и определяют в них содержание, или титр раствора. Весь запас сохраняется в небольших, тщательно закупоренных склянках; в дело берут одну какую-нибудь склянку и расходуют ее всю. Вычислением определяют содержание вещества в см3 раствора, или титр. Положим, что нужно определить количество углекислого натра в продажной соде. Для этой цели отвешивают определенное количество ее, причем выгоднее брать не слишком малые навески, чтобы взять отсюда для исследования некоторую определенную часть. Положим, что отвешено 10 г соды; их высыпают в колбу, вмещающую до черты на шейке ровно 1 л воды, растворяют в воде и доливают колбу до черты; затем размешивают жидкость посредством сильных встряхиваний колбы, берут оттуда пипеткой 50 см3, переносят их в колбочку и нагревают до кипения. Чтобы измерить количество титрованной серной кислоты, необходимое для нейтрализации соды, пользуются бюреткой Мора с зажимным краном. Бюретки — не что иное, как калибрированные трубки, разделенные на см 3 и их части; на суженном конце такой бюретки надевается каучуковая смычка, в которую вставляют оттянутую в тонкий конец стеклянную трубочку для выпускания жидкости; каучуковая смычка зажимается посредством согнутого из проволоки (Моровского) зажима. Бюретку наполняют титрованной жидкостью до самого верхнего деления, до нуля, и затем подставляют под кончик бюретки колбочку с нагретым до кипения раствором соды, окрашенным настоем лакмуса в синий цвет. Лакмус, который может быть заменен также и другими красящими веществами (пигментами), является индикатором конца реакции. Сдавливая слегка обе пуговки зажима, открывают его и выпускают кислоту в раствор соды, причем постоянно встряхивают колбочку для более полного смешения обеих жидкостей и для того, чтобы ускорить удаление выделившейся углекислоты. После прилития известного количества серной кислоты жидкость принимает красновато-голубой цвет; тогда запирают зажим, снова нагревают жидкость до кипения, причем по мере удаления из жидкости растворенной углекислоты вновь появляется голубая окраска. Как только достигнут этого, опять приливают из бюретки кислоту по каплям и тотчас же запирают зажимной кран, как только окраска вдруг изменится из голубой в красную. Тогда производят отчет уровня кислоты в бюретке. Положим, что прилито 36,5 см3 серной кислоты, титр которой по весовым определениям оказался равным 0,01204 г H2SO4 (на 1 см3). Как уже указано выше, 98 частей серной кислоты отвечают 106 частям углекислого натра, следовательно, титр серной кислоты отвечает 0,01802 г. углекислого натра. Так как прилито 36,5 см3 серной кислоты, то анализируемая жидкость содержала 36,5∙0,01302 = 0,475 г. углекислого натра; для исследования же взята только 1/20 часть отвешенного количества, а потому полученное число надо помножить на 20; следовательно, навеска (10 г) содержит 0,475∙20 = 9,500 г. углекислого натра. Подобного рода определения производятся при анализе всяких щелочей; они служат основанием алкалиметрии. Так как при титровании углекислых щелочей переход синего цвета лакмуса в красный происходит не моментально, а постепенно, что зависит от выделения углекислоты во время опыта, то для таких случаев Мором предложен метод обратного титрования. Сущность его заключается в том, что к щелочной жидкости приливают избыток титрованной серной кислоты до постоянного красного окрашивания и этот избыток обратно титруют раствором едкого натра, один см3 которого соответствует определенному объему (например, 1 см3) употребляющегося для титрования раствора серной кислоты, так что по числу см3 едкого натра можно определить избыток прилитой серной кислоты. Так как при обратном титровании едкой щелочью нет выделения углекислого газа, то переход цветов совершается моментально. Метод этот весьма употребителен. Алкалиметрии противополагается ацидиметрия, или объемное определение кислот с помощью титрованного щелочного раствора. Как индикатор здесь с удобством применяется спиртовой раствор фенолфталеина, окрашивающийся от малейшего присутствия свободной щелочи в малиновый цвет. Органические кислоты (слабые) титруют обыкновенно раствором едкого барита, сильные же минеральные — едким натром.

     Кроме ацидиметрии и алкалиметрии существует еще несколько методов объемного  определения; из них метод окисления и восстановления весьма употребителен; им пользуются как при определении низших степеней окисления металлов, переводя их в высшие, так и при анализе высших степеней окисления, определяя их по переходу в низшие или обходным путем, по разложению галоидоводородных кислот; в последнем случае определяется количество свободного галоида, хлора или брома, по количеству вытесненного йода (йодометрия). Не столь широко применим метод осаждения, основанный на образовании нерастворимого соединения из двух растворимых; момент конца реакции — окончание образования осадка — распознается при помощи различных индикаторов.  [2]

Порядок анализа:

  • проводят химическую реакцию с точно определённым (косвенно измеренным) количеством реагента, вступающим в химическую реакцию с определяемым компонентом без побочных реакций, без остатка, в строго определенных соотношениях (стехиометрично);

    aA + bB  =  cC + dD

  • реакция может быть переписана в условных единицах – эквивалентах, для которых стехиометрические коэффициенты для всех участников реакции равны 1. В этом случае можно приравнять число частиц всех составляющих реакции друг другу:

nэ(А)  =  nэ(В)  = nэ(С) =  nэ(D)- это запись закона эквивалентов или принципа эквивалентности;

  • тип применяемой химической реакции в титриметрии обусловлен химическими свойствами определяемого компонента. Условные частицы – эквиваленты устанавливаются для каждого типа химической реакции по своим правилам;
  • например, железо в руде может быть определено после соответствующей подготовки пробы методом перманганатометрии (окислительно-восстановительного титрования), где использованы окислительно-восстановительные свойства железа и марганца:

5Fe2+  +  MnO4-   + 8H-

  • расчеты содержания неизвестного компонента производят на основе закона эквивалентов:

    nэ(Fe2+)  =  nэ(MnO4-)  → Cэ (Fe2+)V(Fe2+) = Cэ(MnO4-)V(MnO4-)   [4] 

     Гравиметрический анализ, весовой анализ, один из важных методов количественного химического анализа, основанный на точном измерении массы вещества. Определяемое вещество обычно выделяют из анализируемой пробы в виде малорастворимого соединения известного постоянного химического состава, т. к. выделение вещества в химически чистом виде связано с большими трудностями, а иногда и невозможно. Гравиметрический анализ начинается с взятия точной навески анализируемой пробы и перевода её в раствор. Затем, прибавляя соответствующий реактив, получают малорастворимый осадок соединения, содержащего определяемое вещество. Осадок отделяют от раствора фильтрованием, промывают и сушат или прокаливают до постоянного значения массы. Зная навеску анализируемой пробы а, массу осадка b и его состав, вычисляют содержание определяемого вещества Х (обычно в % по массе): X = a∙F∙100/b, где F — фактор пересчёта, представляющий собой отношение атомной массы определяемого вещества (или величины, кратной атомной массе) к молекулярной массе соединения в осадке. Например, при определении содержания железа (атомной масса 55,85), выделенного в виде его окиси Fe2O3 (молярная масса 159,70),

     

     Наиболее  ответственная операция гравиметрического  анализа — получение легко  фильтрующегося (по возможности крупнокристаллического) малорастворимого осадка (потеря вещества вследствие его растворимости не должна превышать 0,1 мг), свободного от примесей посторонних веществ, не удаляющихся при сушке или прокаливании. Гравиметрический анализ отличается большой точностью: относительная ошибка опыта не превышает 0,1%, а при особо тщательной работе может быть доведена до 0,02—0,03% . Недостатки гравиметрического анализа — длительность выполнения и необходимость применения сравнительно больших количеств анализируемой пробы (~0,5 г). Последний недостаток устраняется при использовании микро- и ультрамикрометодов гравиметрического анализа. Гравиметрический анализ применяют для определения химического состава горных пород, минералов, сплавов, для контроля качества сырья и готовой продукции в ряде отраслей промышленности. К разновидностям гравиметрического анализа относятся пробирный анализ и электрогравиметрический анализ.[5]

Порядок анализа:

  • проводят химическую реакцию с реагентом, вступающим в химическую реакцию с определяемым компонентом в строго определенных соотношениях (стехиометрично), и имеется возможность точно измерить массу образующегося продукта реакции;
  • например, содержание сульфатов в породе может быть определено после соответствующей пробоподготовки методом гравиметрии, где использовано свойство сульфатов образовывать малорастворимое соединение с ионами Ва2+

SO42-  +  ВаСl2  = ВаSO4↓  + 2Сl-

  • расчеты содержания неизвестного компонента производят на основе закона сохранения массы (количества) компонента при химических взаимодействиях

m(SO42-)  =M(SO42-) m(ВаSO42-)/ M(ВаSO42-) [4] 

 

Физические методы.

Электролитические методы анализа.

     Особых  методов требует элементарный анализ органических соединений, или сожжение; большинство этих соединений состоит из трех элементов: углерода, водорода и кислорода. Для того, чтобы определять процентное содержание их в анализируемом веществе, поступают следующим образом: берут навеску вещества (около 0,3 г.), смешивают ее с окисью меди и прокаливают; при этом весь углерод сгорает в углекислоту, водород же дает воду; эти продукты сожжения собирают (каждый в отдельности), взвешивают и из найденного веса углекислоты и воды вычитывают количество углерода и водорода; разность между суммой весов этих элементов и взятой навеской дает вес кислорода. Для практического выполнения всего сказанного пользуются следующего рода прибором: в трубку из тугоплавкого богемского стекла, оттянутую на заднем своем конце в так наз. штык (тонкий конец, загнутый в форме штыка), помещают слой прокаленной зерненной окиси меди длиною в 5 см, а затем само вещество в смеси с порошковатой окисью меди; этой последней берется такое количество, чтобы оно занимало в трубке около 10 см, затем насыпают сверху новый слой зерненной окиси меди в 25 см, вставляют асбестовую, а за нею хорошую обыкновенную пробку со вставленной в нее взвешенной хлоркальциевой трубкой; эта последняя соединяется посредством каучуковой смычки с шариковым прибором, калиаппаратом, наполненным крепким раствором едкого кали; на особой газовой печи (или на углях в так наз. Либиховской печи) нагревают сначала передний, а затем задний конец трубки, идя от концов к середине, пока вся трубка, кроме средней части, где помещается анализируемое вещество, не будет раскалена почти докрасна; лишь только достигнут этого момента, начинают нагревать весьма осторожно смесь вещества с порошковатой окисью меди; смотря по быстроте выделения пузырьков углекислоты в калиаппарате, нагревание к концу сожжения постепенно усиливают, пока наконец вся трубка не будет сильно накалена. Образующиеся при этом пары разложенного вещества, проходя над раскаленной окисью меди, вполне сгорают в углекислоту и воду, из которых первая задерживается в хлоркальциевой трубке, последняя же поглощается в калиаппарате. По окончании сожжения обламывают кончик штыка и пропускают через него в трубку ток сухого кислорода для сожжения оставшихся следов углерода, при чем восстановленная окись меди вновь окисляется, а остающиеся в трубке продукты сожжения прогоняются в поглотительные приборы. Привес хлоркальциевой трубки дает количество образовавшейся воды, а привес калиаппарата — количество углекислоты.

Информация о работе Химический анализ, как метод получения информации о загрязнении окружающей среды