Полиуретан

Автор работы: Пользователь скрыл имя, 05 Апреля 2012 в 23:39, курсовая работа

Краткое описание

В настоящее время к полиуретанам относят обширный класс полимеров, зачастую сильно отличающихся химической природой, строением цепи и свойствами, но неизменно содержащих уретановые группы –NHCOO–. Иногда с целью уточнения названия из-за наличия наряду с уретановой других функциональных групп употребляют такие термины, как полиуретаны сложноэфирного типа, полиуретаны на основе простых олигоэфиров, полимочевиноуретаны. Хотя эти названия технически более точны, пользоваться ими неудобно, поэтому применяют термин “полиуретан”, который объединяет все полимеры, содержащие уретановую группу.
Полиуретаны являются универсальным материалом : на основе полиуретанов изготавливают эластичные, полужесткие и жесткие матер

Содержание работы

Вступ 3
I. Методи синтезу поліуретану 6
1.1. Основы синтеза полиуретанов 6
1.2. Исходные соединения для синтеза полиуретанов 8
1.3.Физические межмолекулярные связи в полиуретанах 11
1.4. Кинетические особенности реакции полиуретанирования 12
II.Характеристика поліуретану 16
III.Область застосуванняполіуретану 18
Висновки 21
Список літератури

Содержимое работы - 1 файл

Полиуретан.doc

— 223.50 Кб (Скачать файл)

                                              

 

    Перечисленные реакции, а также другие бесфосгенные методы получения изоцианатов (карбонилирование ароматических нитросоединений, термическое разложение фуроксанов и аминамидов) являются очень дорогими и не могут составить конкуренцию методу фосгенирования .

 

Олигодиолы. В качестве олигодиолов на практике в основном применяют простые и сложные олигоэфиргликоли. Из простых олигоэфиргликолей наибольшее практическое применение получили олигооксипропилен- и олигоокситетраметиленгликоли. Олигооксипропиленгликоль получают полимеризацией окисипропилена, а олигоокситетраметиленгликоль – полимеризацией тетрагидрофурана по следующим схемам:


Применяют также сополимер тетрагидрофурана с окисью пропилена. Отметим, что олигоокситетраметиленгликоль часто называют полифуритом, что связано с названием используемого для его синтеза тетрагидрофурана.

    Из сложных олигоэфиров для получения полиуретанов чаще всего применяют олигоэфиры адипиновой кислоты и различных гликолей (этилен-, пропилен-, бутилен-, диэтиленгликоли). Синтез их протекает по схеме

 

(n + 1)HO ─ R ─ OH + nHOOCR’COOH →

→ HO ─ [─ROOCRCOO ─ ]n ─ H

 

    Удлиннители и сшивающие агенты цепи. В промышленности значительное развитие получил метод RIM – реакционно-инжекционного формования мономер - олигомерных композиций на литьевых машинах высокого давления. Этим методом получают обувь, резинотехнические изделия, детали автомобилей. Высокая производительность и меньшая энергоемкость делают производство полимерных изделий RIM-методом экономически более эффективным по сравнению с традиционной технологией. В качестве удлинителей цепи чаще всего применяют 1,4-бутандиол и 3,3'-дихлор-4,4'-диамино-дифенилметан (метилен-бис-o-хлоранилин):

 

 

 

 

 

 

1.3.Физические межмолекулярные связи в полиуретанах.

 

Как было отмечено, полиуретаны в зависимости от химического строения исходных компонентов могут содержать различные группы. К этим группам следует отнести углеводородную (–СН–), простую эфирную (–О–), сложно-эфирную (–СОО–), ароматическую (–СН–), амидную (–СОNН–), уретановую (–ОСОNН–), которые отличаются степенью полярности, а следовательно, и прочностью образованных ими физических связей. Прочность этих связей определяется энергией когезии, величина которой для перечисленных групп приведена ниже.

Группа

Энергия когезии, 
кДж/моль

–СН–

2,85

–О–

4,19

–СОО–

12,15

–СН–

16,34

–СОNН–

35,61

–ОСОNН–

36,62


 

     Как видно, сильные межмолекулярные связи могут возникать при наличии в полимерах уретановых и амидных групп. Наличие ароматических и сложноэфирных групп способствует возникновению между макромолекулами достаточно сильных физических связей.

    Вместе с тем, нельзя недооценивать и роль слабых (ван-дер-ваальсовых) связей, роль которых особенно велика при отсутствии или малой концентрации сильнополярных функциональных групп. Естественно, что наличие в цепи только полярных групп еще не обеспечивает возникновения межмолекулярных физических связей с максимально возможной степенью интенсивности.

    Важным фактором является определяемая химическим строением цепей возможность их геометрического упорядочения, поскольку сила физической связи будет характеризоваться и взаимным расположением взаимодействующих групп. Кроме того, мощным регулятором интенсивности межмолекулярных взаимодействий в полиуретанах является молекулярная масса исходного олигоэфиргликоля. Увеличение молекулярной массы последнего влечет за собой понижение концентрации уретановых групп и одновременно с этим уменьшение количества сильных физических связей. При этом следует учитывать наличие в уретановых группах активного атома водорода, способного играть роль донора и участвовать в образовании водородных связей (Н-связей). В полиуретанах следует выделить три основных типа Н-связей:

    Как видим, в перечисленных типах Н-связей акцептором протона является карбонильный кислород уретановой и сложноэфирной групп либо кислород простой эфирной группы. Какой из типов Н-связей реализуется в наибольшей степени, зависит от химического строения цепи полиуретанов и количественного соотношения участвующих в образовании Н-связей функциональных групп. Кроме того, наличие в цепи полиуретанов мочевинных групп, что встречается часто, также создает условия для образования Н-связей. Присутствие в полиуретанах аллофановых, биуретовых, ацилмочевинных и других групп обусловливает новые возможности для образования Н-связей. Природа и характер распределения физических связей (включая и Н-связи) являются важными для физикохимии полиуретанов; их взаимосвязь со структурой и свойствами полиуретанов более детально изложена в монографиях.

 

1.4. Кинетические особенности реакции полиуретанирования.

 

    У мономеров с функциональными группами (гидроксильными и аминогруппами) атом водорода весьма подвижен и поэтому они активно участвуют в реакции полиприсоединения (например, при взаимодействии с изоцианатами) с образованием высокомолекулярных продуктов. В этом случае реакцию полиприсоединения следует рассматривать как поликонденсационный процесс, не сопровождающийся образованием низкомолекулярных продуктов. Поэтому состав звеньев полимера и мономера идентичен (в отличие от поликонденсации, сопровождающейся выделением низкомолекулярного продукта, когда составы различаются).

    Пример: получение полиуретана (полимер, содержащий в основной цепи уретановые группы –HN–CO–O–) из диизоцианата и диолов путём полиприсоединения, когда подвижный атом водорода гидроксильной группы диолов мигрирует и присоединяется к атому азота изоцианатной группы:

  

    В приведенной реакции активные функциональные группы, как и при поликонденсации, расходуются при синтезе полимера, а в образующейся цепи звенья содержат новые неактивные функциональные группы.

    Линейные кристаллизующиеся полиуретаны характеризуются высокой жесткостью и небольшим водопоглощением и применяются в качестве пластмасс. Сшитые полиуретаны применяют в качестве эластомеров, пенопластов, для изготовления лаков, эмалей, волокон, клеёв, герметиков и др.

    При изучении структуры полиуретанов необходимо иметь в виду кинетические особенности реакции. Диизоцианаты в зависимости от их химического строения обладают различной реакционной способностью - с наименьшей скоростью вступают в реакцию алифатические диизоцианаты, в то время, как ароматические, особенно содержащие электроноакцепторные заместители (нитро-, нитрильные, галоидные группы), обладают повышенной реакционной способностью.

    Реакционная способность изоцианатной группы может быть объяснена на основе ее электронной структуры:

 

  

    Возможные резонансные структуры показывают, что наивысшая плотность электронов наблюдается на кислороде, а наименьшая на углероде, так что наибольший отрицательный заряд имеет кислород, наибольший положительный - углерод; азот имеет промежуточный (средний) общий отрицательный заряд [40]. Реакции изоцианатов с соединениями, содержащими активный водород, протекает путем воздействия нуклеофильного центра на электрофильный углерод в изоцианатной группе: 


Тот факт, что соединения с активным атомом водорода действуют в этой реакции как донор электронов, а не как донор водорода подтверждается влиянием электрофильных групп в этих соединениях. Эти группы способны отнимать электроны от активного водорода, обедняя его как донора электронов и уменьшая скорость реакции сизоцианатом. Такое снижение активности наблюдается у соединений содержащих активный водород, как показано ниже: СН3 NH2 > С6Н5 NH2 > СНз ОН > С6Н5 ОН > СН3 СООН

    Электроноакцепторные заместители в  молекуле аминов  понижают основность   азота,    делая    его    более   слабым   донором   электронов:

 


 

    Напротив, электродонорные заместители увеличивают основность азота в аминогруппе, увеличивая, тем самым реакционноспособнось амина в отношении изоцианата.

    При введении электрофильных групп в изоцианат мы наблюдаем противоположный эффект, так как в этом случае положительный заряд атома углерода в изоцианатной группе увеличивается, облегчая таким образом атаку этого  атома  нуклеофильным  агентом  и увеличивая  скорость  реакции:

 

  

    Помимо электронных эффектов заместителей важную роль играют стерические факторы. Реакции ароматических диизоцианатьв замедляются громоздкими заместителями, находящимися в ортоположении, алифатических -разветвленными или большими по размерам заместителями расположенными в близи реакционного центра. Стерические эффекты оказывают влияние не только на реакционную способность изоцианатов и соединений с подвижным атомом водорода, но также и на эффективность катализатора. Поскольку катализатор должен приблизиться к реакционному центру так же близко, как и сам реагент. Легкость и степень этого приближения будет определяться соотношением размеров молекул катализатора и реагентов.

    Кинетика реакции диизоцианатов обычно сложнее, чем реакции моноизоцианатов. Реакционная способность одной изоцианатной группы диизоцианатов одинакова с реакционноспособностью моноизоцианата, имеющего заместитель, который увеличивает его активность. Таким заместителем в случаи диизоцианата является вторая изоцианатная группа. Снижение реакционноспособности может быть еще большим, если имеется заместитель в ортополжении по отношению к одной из изоцианатных групп.

    В качестве примера можно взять 2,4-толуилендиизоцианат. Более реакционно-способной изоцианатной группой в данном случае должна быть NCO-группа в положении 4, которая активируется NCO-группой в положении 2. Группа в положении 2 аналогичным образом активируется изоцианатной группой в положении 4, однако она дезактивируется влиянием метальной группы в положении 1. Таким образом, можно ожидать снижения константы скорости реакции при достижении примерно 50% - ой степени превращения .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II.Характеристика поліуретану

        Высокая абразивная устойчивость. Благодаря этому свойству полиуретаны стали известны в технике. Изделия из полиуретанов до 50 раз долговечнее резин, пластиков, в некоторых применениях - цветных и черных металлов. Эта долговечность часто означает, что полиуретановые детали могут быть сделаны с меньшим по весу количеством материала, требовать меньше затрат на обслуживание, создавая в итоге значительную экономию средств.

        Твердость по Шору в диапазоне 30А-80Д шкала твердости. Полиуретан - один из самых жестких, наиболее абразионно-стойких эластомеров, не подверженных разлому под нагрузками

        Высокая прочность на разрыв и сопротивление распространению надрезов, устойчивость к воздействию рубящих ударов. Изделия из полиуретанов сохраняют форму и механические свойства после приложения циклических нагрузок.

        Высокая эластичность. Изделия из полиуретанов хорошо противостоят многократным изгибам без разрушения. Высокая прочность полиуретанов позволяет использовать их в тонких слоях для повышения эластичности в динамических применениях.

        Коэффициент трения. Полиуретаны могут быть изготовлены с коэффициентом трения от очень низкого, подобно втулкам, подшипникам или сменным вкладышам, до очень высокого, подобно шинам или валам. Естественная смазывающая способность полиуретанов позволяет их использование с другими движущимися частями без смазок.

        Температурный диапазон эксплуатации изделий от -50 до +80ºС, кратковременно до +100ºС. Полиуретаны остаются гибкими при очень низких температурах и обладают выдающимся сопротивлением тепловому удару.

        Высокая упругость и эластичность в широком диапазоне твердости, сопротивление многократным деформациям и изгибам без разлома. Удлинение до 650%.

        Низкая остаточная деформация при снятии нагрузки. Полиуретаны имеют высокую допустимую нагрузку на сдвиг.

        Хорошая адгезия к большинству материалов. Возможность изготовления армированных деталей.

        Хорошая химическая стойкость к маслам, нефти, органическим растворителям.

        Прекрасная устойчивость к неблагоприятным атмосферным воздействиям - влаге, озону, ультрафиолетовой радиации, микроорганизмам, комбинированному воздействию трения и коррозионных сред.

Информация о работе Полиуретан