Полиуретан

Автор работы: Пользователь скрыл имя, 05 Апреля 2012 в 23:39, курсовая работа

Краткое описание

В настоящее время к полиуретанам относят обширный класс полимеров, зачастую сильно отличающихся химической природой, строением цепи и свойствами, но неизменно содержащих уретановые группы –NHCOO–. Иногда с целью уточнения названия из-за наличия наряду с уретановой других функциональных групп употребляют такие термины, как полиуретаны сложноэфирного типа, полиуретаны на основе простых олигоэфиров, полимочевиноуретаны. Хотя эти названия технически более точны, пользоваться ими неудобно, поэтому применяют термин “полиуретан”, который объединяет все полимеры, содержащие уретановую группу.
Полиуретаны являются универсальным материалом : на основе полиуретанов изготавливают эластичные, полужесткие и жесткие матер

Содержание работы

Вступ 3
I. Методи синтезу поліуретану 6
1.1. Основы синтеза полиуретанов 6
1.2. Исходные соединения для синтеза полиуретанов 8
1.3.Физические межмолекулярные связи в полиуретанах 11
1.4. Кинетические особенности реакции полиуретанирования 12
II.Характеристика поліуретану 16
III.Область застосуванняполіуретану 18
Висновки 21
Список літератури

Содержимое работы - 1 файл

Полиуретан.doc

— 223.50 Кб (Скачать файл)

        Использование полиуретанов позволяет уменьшить вес изделия до 50 %, снизить уровень вибраций и системного шума работающих механизмов в сравнении с металлами.

        Большинство полиуретанов - превосходные электрические изоляторы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III.Область застосування поліуретану

 

Разнообразие исходного сырья, а также химических реакций, сопровождающих синтез ПУ, возможности формирования широкого набора химических и физических связей позволяют создавать на основе ПУ различные материалы. В связи с этим непрерывно разрабатываются все новые и новые возможности использования ПУ.

 

Полиуретановые эластомеры. Они характеризуются высокими значениями прочности и сопротивления раздиру, износостойкостью, устойчивостью к набуханию в различных маслах и растворителях, а также озоно- и радиационностойкостью. Сочетание высокой эластичности с широким диапазоном твердости определяет превосходные эксплуатационные свойства изделий на их основе . Наиболее широкое применение в промышленности получили литьевые полиуретановые эластомеры, из которых изготовляют как крупногабаритные изделия, так и изделия средних размеров: массивные шины для внутризаводского транспорта, надежность которых в 6-7 раз больше, чем шин из углеводородных каучуков; детали устройств для транспортирования абразивного шлама, флотационных установок, гидроциклов и трубопроводов, применяемых в горнодобывающей промышленности. Тонкими листами ПУ эластомеров покрывают лопасти вертолетов, что надежно защищает детали от абразивного износа и повышает срок их эксплуатации более чем в два раза. Литьевые ПУ эластомеры используют также для получения приводных ремней в стиральных машинах, ковровых изделий. Из них изготавливают конвейерные ленты, рукава, разнообразные уплотнительные детали, которые применяют в угледобывающей и нефтеперерабатывающей промышленности, детали машин, валики для текстильной и бумажной промышленности, уплотнения гидравлических устройств шахтных крепей и масляно-пневматических амортизаторов железнодорожного транспорта.

ПУ термоэластопласты наиболее широко применяются в автомобилестроении. Из них изготавливают подшипники скольжения рулевого механизма, элементы для передней подвески, вкладыши рулевых тяг, самосмазывающиеся уплотнения, топливостойкие клапаны, маслостойкие детали, рычаги переключения передач. В обувной промышленности из ПУ эластомеров изготавливают сравнительно дешевые и износостойкие подошвы, а также используют в качестве искусственной кожи.

 

Пенополиуретаны. В 1947 году Байер опубликовал данные о методе получения жестких пенополиуретанов. В результате дальнейших исследований в лабораториях "Farbenfabriken Bayer" были получены эластичные пенополиуретаны, которые обеспечили успешное развитие промышленности ПУ.

Процесс образования пенополиуретанов гораздо сложнее, чем процессы, протекающие при получении невспененных ПУ, поскольку здесь приходится сталкиваться с явлениями, характерными для коллоидных систем. Для того чтобы иметь ясное представление о процессе пенообразования, нужно знать основные реакции, в результате которых происходят образование газа и рост макромолекул, коллоидную химию формирования пузырьков пены, а также реологию полимера в процессе его отверждения.

В качестве вспенивателей, особенно в производстве жестких пенопластов, также применяют низкокипящие жидкости - фреоны (хладоны), представляющие собой галоидалканы, например трихлорфторметан. Однако в связи с проблемой разрушения озонового слоя Земли использование некоторых из них запрещено. Отметим, что на долю пенополиуретанов приходится не более 5% общего объема потребления фреонов, основная же их часть используется в качестве аэрозольных пропеллентов и рабочего вещества холодильных машин. Тем не менее перед производителями пенополиуретанов стоит актуальная задача поиска заменителей фреонов.

 

Пенополиуретаны условно разделяются на следующие группы:

 

1) по твердости или значению модуля упругости - на жесткие, полужесткие и эластичные (обычно к эластичным относятся пенопласты, имеющие напряжение сжатия при 50%-ной деформации менее 10 кПа, а к жестким - более 150 кПа; полужесткие занимают промежуточное положение);

2) по способу получения - на блочные и формованные;

3) по степени замкнутости ячеек - на открыто- и закрытоячеистые. Важными свойствами пенополиуретанов являются невысокая кажущаяся плотность (до 16-18 кг/м3), отличные теплоизоляционные свойства, высокая прочность при растяжении и раздире, стойкость к окислительному старению.

 

Основными потребителями эластичных пенополиуретанов являются мебельная промышленность, транспорт (прежде всего автомобилестроение) и обувная промышленность. Жесткие пенополиуретаны являются одними из наиболее распространенных строительных материалов. Эти легкие, но достаточно прочные пенопласты обладают очень низкой теплопроводностью, малой паропроницаемостью, высокой адгезией к металлу, штукатурке и древесине. Их также используют для изоляции холодильных камер, утепления жилых зданий, теплоизоляции трубопроводов, промышленных и административных зданий.

 

Другие области применения полиуретанов. Перечислим некоторые из перспективных направлений применения ПУ, которые являются прекрасными примерами реализации богатства их возможностей. ПУ используют в качестве связующих для изготовления древесностружечных плит взамен мочевино-формальдегидных смол. Однокомпонентные пенопласты (или пеногерметики) из ПУ применяют для заполнения полостей, щелей. Освоен выпуск пенопластов, заменяющих и имитирующих древесину. ПУ используют для получения эффективных клеевых составов и покрытий в строительстве и машиностроении, а также клеев и протезов медицинского назначения, которые благодаря прекрасным физико-механическим свойствам и сходству их строения с белковыми структурами лучше совмещаются с тканями организма. Большие успехи в последние десятилетия достигнуты также в области переработки уретановых реакционноспособных композиций.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Висновоки

 

Полиуретаны – синтетические гетероцепные полимеры. Полиуретаны могут сильно отличаться друг от друга строением цепи, химической природой и свойствами, но их объединяет наличие в основной цепи макромолекулы

уретановых групп -NHCOO-. 


Количество уретановых групп зависит от молекулярной массы конкретного полиуретана и соотношения исходных компонентов при его синтезе. В зависимости от природы последних в макромолекулах полиуретанов могут содержаться и другие функциональные группы: простые эфирные и сложноэфирные (полиэфируретаны), мочевинные (полиуретанмочевины), изоциануратные (полиуретанизоцианураты), амидные (полиамидоуретаны), двойные связи (полидиенуретаны), которые наряду с уретановой группой определяют комплекс свойств полимеров. При увеличении числа функциональных групп в молекулах одного или обоих компонентов до трех или более получаются разветвленные или сшитые полимеры.
Структуру и свойства полиуретанов можно менять в широких пределах путем подбора соответствующих исходных веществ. Они относятся к числу тех немногих полимеров, у которых можно направленно регулировать число поперечных связей, гибкость полимерных молекул и характер межмолекулярных взаимодействий. Это дает возможность получать из полиуретанов самые разнообразные материалы – синтетические волокна, твердые и мягкие эластомеры, жесткие и эластичные пеноматериалы, различные термореактивные покрытия и пластические массы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список літератури

 

1.        Ю.П. Гетьманчук, М.М. Братичак. Хімія та технологія полімерів. Підручник. – Львів : Видавництво “Бескид Біт”, 2006.- 496 с.

2.        Технология пластических масс. Под ред. В.В. Коршака. Изд. 3-е, перераб. и доп. – М.: Химия, 1985 – 560 с., ил.

3.        Полиуретаны. Под ред. Н.И. Кольцова, В.А. Ефимов. Книга. – Россия, г.Москва.: Химия, 1995 – 890 с.

4.        Энциклопедия полимеров, т. 3, М., 1977, с. 63-70;

5.        Шабаров Ю.С. Органическая химия 1т. - М.: Химия, 1996.

6.        Саундерс Дж.Х., К.К. Фриш. Химия полиуретанов. М., 1968. – 469 с.

 

 

1

 



Информация о работе Полиуретан