Теория электролитической диссоциации

Автор работы: Пользователь скрыл имя, 15 Ноября 2011 в 16:15, реферат

Краткое описание

Еще на заре изучения электрических явлений ученые заметили, что ток могут проводить не только металлы, но и растворы. Но не всякие. Так, водные растворы поваренной соли и других солей, растворы сильных кислот и щелочей хорошо проводят ток. Растворы уксусной кислоты, углекислого и сернистого газа проводят его намного хуже. А вот растворы спирта, сахара и большинства других органических соединений вовсе не проводят электрический ток. Английский физик Майкл Фарадей еще в 30-е годы XIX века, изучая закономерности прохождения электрического тока через растворы, ввел термины «электролит», «электролиз», «ион», «катион», «анион». Электролит – вещество, раствор которого проводит электрический ток. Происходит это в результате движения в растворе заряженных частиц – ионов.

Содержание работы

Введение
Понятие диссоциации
Теория электрической диссоциации
Сильные и слабые электролиты
Механизм электрической диссоциации
Диссоциация кислот, солей и оснований в водных растворах
Степень диссоциации
Значение теории электрической диссоциации для развития науки

Содержимое работы - 1 файл

Теория электролитической диссоциации.doc

— 105.50 Кб (Скачать файл)

Бюджетное учреждение

среднего  профессионального образования

Ханты-Мансийского  автономного округа – Югры

Нижневартовский профессиональный колледж 
 
 
 
 
 
 
 
 

Теория  электролитической диссоциации 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                      Выполнил:

                                                                                      Проверил: Л.А. Никешина 
 
 
 
 
 
 
 
 
 

г. Нижневартовск 2009

 

Содержание:

  1. Введение
  2. Понятие диссоциации
  3. Теория электрической диссоциации
  4. Сильные и слабые электролиты
  5. Механизм электрической диссоциации
  6. Диссоциация кислот, солей и оснований в водных растворах
  7. Степень диссоциации
  8. Значение теории электрической диссоциации для развития науки

 

     Дождливый день. На остановке троллейбуса люди складывают зонтики и заходят в салон. Вот один из них поставил ногу на ступеньку и тут же отпрянул: «Ой, током бьет!» Как же ток добрался до пассажира?

     Еще на заре изучения электрических явлений ученые заметили, что ток могут проводить не только металлы, но и растворы. Но не всякие. Так, водные растворы поваренной соли и других солей, растворы сильных кислот и щелочей хорошо проводят ток. Растворы уксусной кислоты, углекислого и сернистого газа проводят его намного хуже. А вот растворы спирта, сахара и большинства других органических соединений вовсе не проводят электрический ток. Английский физик Майкл Фарадей еще в 30-е годы XIX века, изучая закономерности прохождения электрического тока через растворы, ввел термины «электролит», «электролиз», «ион», «катион», «анион». Электролит – вещество, раствор которого проводит электрический ток. Происходит это в результате движения в растворе заряженных частиц – ионов. Спустя много лет и в другой стране был придуман забавный стишок, позволяющий запомнить заряд ионов:

Для двух ребят подарков груз

ИОН взвалил себе на спину:

Для КАТИ ОН несет свой плюс,

Для АНИ ОН несет свой минус.

     Причина появления в растворах заряженных частиц была совершенно непонятной. Само название «электролит» (от греч. lysis – разрушение, растворение) предполагало, что ионы появляются в растворе при пропускании через него электрического тока.

     Изучение растворов методами физической химии, например, с помощью измерения осмотического давления и криоскопии показало, что в растворах электролитов число частиц больше, чем дают расчеты, основанные на концентрации растворенного вещества. Получалось, например, что в разбавленных растворах поваренной соли число частиц вдвое больше, чем вычисленное по формуле NaCl, в растворах CaCl2 – втрое больше и т.д. Это можно было бы объяснить, предположив, что указанные соединения при растворении в воде распадаются на несколько частей – как говорят химики, претерпевают диссоциацию (от латинского dissociatio – разъединение, разделение).

     Явления диссоциации химикам были известны; например, при нагревании хлорида аммония: он возгоняется с одновременной диссоциацией на две молекулы:

                                      NH4Cl ® NH3 HCl.

     Но распад при нагревании было объяснить намного легче: энергия, необходимая для диссоциации, черпается за счет тепловой энергии. А вот откуда берется энергия при растворении соли в воде при комнатной температуре, никто объяснить не мог (температура раствора часто почти не меняется). Более того, при растворении некоторых солей в воде раствор сильно нагревается! Непонятно было также, как и на что может распадаться в растворе поваренная соль – ведь не на натрий же и хлор!

     В 1887 году шведский физико-химик Сванте Аррениус, исследуя электропроводность водных растворов, высказал предположение, что в таких растворах вещества распадаются на заряженные частицы – ионы, которые могут передвигаться к электродам –       отрицательно заряженному катоду и положительно заряженному аноду. Это и есть причина электрического тока в растворах. Данный процесс получил название электролитической диссоциации (дословный перевод – расщепление, разложение под действием электричества). Такое название также предполагает, что диссоциация происходит под действием электрического тока. Дальнейшие исследования показали, что это не так: ионы являются только переносчиками зарядов в растворе и существуют в нем независимо от того, проходит через раствор ток или нет.

     Теория Аррениуса, с одной стороны, объясняла, почему растворы электролитов проводят ток, с другой стороны – объясняла увеличение числа частиц в растворе. Например, в растворе сульфат алюминия Al2(SO4)3 распадается сразу на пять ионов: два катиона алюминия Al3+ и три сульфат-аниона SO42–. За создание теории электролитической диссоциации Аррениус в 1903 году был удостоен Нобелевской премии по химии.

     По степени диссоциации на ионы электролиты стали относить к сильным (полный распад на ионы) и к слабым (на ионы распадается только часть растворенного вещества). Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут  дать большой концентрации ионов в растворе. Как правило, к  сильным электролитам относятся  вещества  с ионными или сильно полярными связями: все хорошо растворимые соли, щелочи, многие кислоты (серная, азотная, соляная). В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов); недиссоциированные  молекулы практически отсутствуют.

     К слабым электролитам относятся кислоты: уксусная СН3СООН, азотистая HNO2, сероводородная H2S, угольная Н2СО3, сернистая H2SO3, большинство органических кислот. Воду также можно отнести к слабым электролитам, так как лишь очень небольшая часть ее молекул находится в растворах в виде катионов Н+ и анионов ОН. Фосфорная кислота Н3РО4 – электролит средней силы. Тело человека также содержит растворы электролитов и проводит электрический ток. Прохождение через тело тока силой всего 0,1 ампера может быть смертельным.

     Многие ученые – современники Аррениуса, вначале не приняли его теорию. У многих из них то время еще не было четкого понимания, чем ионы отличаются от нейтральных атомов. Им казалось невероятным, как, например, хлорид натрия в воде может существовать в виде отдельных ионов натрия и хлора: как известно, натрий бурно реагирует с водой, а раствор хлора имеет желто-зеленый цвет и ядовит. В результате диссертация Аррениуса получила ряд отрицательных отзывов. К числу самых непримиримых противников Аррениуса принадлежал и Д.И.Менделеев, создавший «химическую» теорию растворов, в отличие от «физической» теории Аррениуса. Менделеев считал, что в растворах происходят по сути химические взаимодействия между растворенным веществом и растворителем, тогда как теория Аррениуса представляла водные растворы как механическую смесь ионов и воды. В 1889 году Менделеев опубликовал Заметку о диссоциации растворенных веществ, в которой ставился под сомнение сам факт распада на ионы в растворах электролитов. «Сохраняя все то, что приобретено в отношении к пониманию растворов, – писал Менделеев, – мне кажется, можно оставить в стороне гипотезу об особом виде диссоциации – на ионы, совершающейся с электролитами при образовании слабых растворов».

     Хотя Менделеев, критикуя Аррениуса, во многом был не прав, в его рассуждениях была значительная доля истины. Как это часто бывает в науке, в ожесточенном споре между приверженцами физической и химической теории правыми оказались обе стороны. Очень сильное химическое взаимодействие между ионами и молекулами растворителя дает ту энергию, которая необходима для разрушения кристаллической решетки или молекул электролитов. В случае водных растворов эта энергия называется энергией гидратации (hydor по-гречески вода) и она может достигать очень больших значений; так, энергия гидратации катионов Na+ почти вдвое больше, чем энергия разрыва связи в молекуле Cl2. Чтобы разъединить катионы и анионы в кристаллах электролитов, тоже требуется затратить немало энергии (она называется энергией кристаллической решетки). В результате если суммарная энергия гидратации катионов и анионов при образовании раствора больше энергии кристаллической решетки (или энергии связи между атомами в таких электролитах, как HCl, H2SO4), растворение будет сопровождаться нагреванием, а если меньше – охлаждением раствора. Именно поэтому при растворении в воде таких веществ как LiCl, безводный CaCl2 и многих других раствор нагревается, а при растворении KCl, KNO3, NH4NO3 и некоторых других – охлаждается. Охлаждение может быть таким сильным, что стакан, в котором готовят раствор, покрывается снаружи росой и может даже примерзнуть к мокрой подставке!

     Механизм электролитической диссоциации можно рассмотреть на примере хлороводорода. Связь H–Cl – ковалентная, полярная, молекулы HCl – диполи с отрицательным полюсом на атоме Cl и положительным на атоме Н. Полярны и молекулы воды. В водном растворе молекулы HCl окружены со всех сторон молекулами воды так, что положительные полюса молекул Н2О притягиваются к отрицательным полюсам молекул HCl, а отрицательные полюса – к положительным полюсам молекул HCl. В результате связь H–Cl сильно поляризуется и разрывается с образованием гидратированных катионов H+ и анионов Cl: диполи Н2О как бы растаскивают молекулы HCl на отдельные ионы. Каждый катион H+ в растворе окружен со всех сторон диполями Н2О, направленными к нему своими отрицательными полюсами, а каждый анион Cl окружен противоположно ориентированными диполями Н2О. Аналогичные процессы происходят в воде с молекулами H2SO4, другими молекулами с полярными ковалентными связями, а также с ионными кристаллами. В них уже имеются «готовые» ионы, и роль диполей воды сводится к отделению катионов от анионов.

     Ионы резко отличаются по своим физическим и химическим свойствам от нейтральных атомов. Например, атомы Na реагируют с водой, а катионы Na+ – нет; хлор – сильный окислитель и ядовит, а анионы Cl не являются окислителем и не ядовиты. Цвет ионов при гидратации может измениться. Например, негидратированные ионы меди бесцветны (безводный CuSO4), а гидратированные – голубые.

     Учитывая диссоциацию в растворах, уравнения многих реакций можно записать в сокращенном ионном виде. Ионное уравнение показывает, какие именно ионы участвуют в реакции. Например, полное уравнение реакции

                                     AgNO3 + NaCl ® AgCl + NaNO3

 можно записать  в сокращенном ионном виде:

                                        Ag+ + Cl® AgCl.

     Суть реакции состоит в образовании осадка AgCl при встрече ионов Ag+ и Cl, тогда как ионы Na+ и NO3 остаются в растворе и фактически не принимают участия в реакции.

     Существенным является вопрос о механизме электролитической диссоциации.

     Легче всего диссоциируют вещества с ионной связью. Как известно, эти вещества состоят из ионов. При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор.  При этом образуются гидратированные ионы, т.е. ионы, химически связанные с молекулами воды.

     Аналогично диссоциируют и электролиты, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества также ориентируются диполи воды, которые своими отрицательными полюсами притягиваются к положительному полюсу молекулы, а положительными полюсами - к отрицательному полюсу. В результате этого взаимодействия связующее электронное облако (электронная пара) полностью смещается к атому с большей электроотрицательностью, полярная молекула превращается в ионную и затем легко образуются гидратированные ионы (рис). Диссоциация полярных молекул может быть полной или частичной.

     Таким образом, электролитами являются соединения с ионной или полярной связью - соли, кислоты и основания. И диссоциировать на ионы они могут в полярных растворителях. 

Информация о работе Теория электролитической диссоциации