Строительство в слабых водонасыщенных грунтах

Автор работы: Пользователь скрыл имя, 08 Апреля 2013 в 16:14, доклад

Краткое описание

Иногда здания и инженерные сооружения возводят на слабых грунтах, характеризуемых сильной и неравномерной сжимаемостью. При возведении зданий и сооружений, чувствительных к неравномерным осадкам, к сильносжимаемым относятся грунты, обладающие модулем общей деформации менее 5 МПа и имеющие коэффициент относительной сжимаемости около 0,015 см2/кг. К ним относятся насыпные грунты, илы, торфянистые и слабоуплотненные глинистые грунты (озерно-ледниковые ленточные глины и суглинки, супеси и суглинки, содержащие органику и др.). Эти грунты обладают неравномерной сжимаемостью, что затрудняет прогноз ожидаемых осадок.

Содержимое работы - 1 файл

Доклад ОиФ.doc

— 66.00 Кб (Скачать файл)

Тема 4. Строительство в слабых водонасыщенных грунтах.

 

4.1 Принцип расчёта и проектирования оснований.

 

К слабым водонасыщенным грунтам относят насыщеннные  водой сильносжимаемые грунты, которые при обычных скоростях приложения нагрузок на основание теряют свою прочность, вследствие чего уменьшается их сопротивление сдвигу и возрастает сжимаемость. Слабый глинистый грунт – это дисперсная структурированная система с коагуляционным типом структурных связей, способная при их нарушении переходить из твердообразного состояния в жидкообразное. Текучее состояние грунта определяется степенью нарушения структурных связей. При расчете осадок сильносжимаемых водонасыщенных глинистых оснований возникает необходимость учета ползучести, нелинейной деформируемости и проницаемости. Цикличность приложения нагрузок, например, в элеваторах, изменяет прочностные и деформационные свойства грунтов оснований во времени. Неравномерная загрузка отдельных силосов приводит к значительным неравномерным деформациям. Специалисты рекомендуют проводить равномерную первичную загрузку и разгрузку элеваторов.

Часто к слабым водонасыщенным относят глинистые грунты (илы, ленточные глинистые грунты, водонасыщенные лессовые макропористые и заторфованные грунты и др.) при Е ≤ 5 МПа и sr ≥ 0,8, ϕ = 4 … 10°, с = 0,006 … 0,025 МПа.

Значение коэффициентов  фильтрации в вертикальном и горизонтальном направлениях отличаются до 10 раз. Общая осадка подразделяется на часть, описываемую теорией фильтрационной консолидации, и часть, описываемую процессами вторичной консолидации.

При проектировании фундаментов  мелкого заложения необходимо ограничить:

• средние осадки предельными  величинами;

• относительные разности осадок соседних фундаментов предельными  значениями;

• скорости протекания осадок допустимыми.

При прохождении сейсмических волн через слабый водонепроницаемый грунт возникает поровое давление и снижаются прочностные характеристики грунта. В этих условиях рекомендуется применять сваи-стойки с полной прорезкой слабых грунтов и опиранием на прочный. Кроме того, возможно применение песчаных подушек, дренажных прорезей с пригрузочными насыпями, известковых свай с последующим уплотнением грунтов тяжелыми трамбовками.

В случае, когда методы уплотнения и упрочнения не дают эффекта, а осадка превышает предельную, необходимы конструктивные мероприятия. К ним относятся: повышение жесткости зданий путем разрезки осадочными швами на отдельные блоки; повышение жесткости каждого блока устройством монолитных железобетонных или сборно-монолитных фундаментов; устройство железобетонных или металлических поясов или армированных швов; устройство жестких диафрагм, например, горизонтальных из плит; повышение гибкости и податливости гибких зданий и сооружений.

Осадки фундаментов  вычисляются с использованием расчетных  схем в виде линейно-деформированного пространства или линейно-деформи-руемого слоя. Границу сжимаемой толщи определяют на такой глубине, где дополнительные напряжения равны 3 кПа – для илов, а для заторфованных грунтов на глубине, где дополнительное к природному давление равно структурной прочности.

Дополнительную осадку фундаментов на основаниях, сложенных  водонасыщенными или органо-минеральными грунтами за счет разложения органических включений допускается не учитывать, если в период срока службы сооружения, уровень грунтовых вод не будет понижаться

 

4.2 Способы уплотнения оснований.

 

Фильтрующая пригрузка. Эффективно предпостроечное уплотнение слабых водонасыщенных грунтов. С этой целью устраивают фильтрующую пригрузку. Время уплотнения водонасыщенного грунта почти прямо пропорционально квадрату расстояния до дренажной поверхности. Для сокращения расстояния движения отжимаемой воды устраивают вертикальные песчаные дрены диаметром 0,4 … 0,6 м с расстоянием друг от друга 2,5 м. Вертикальные дрены поверху объединяют песчаной фильтрационной подушкой толщиной 0,6 … 1 м.

При толщине слабых глинистых  грунтов до 7 м могут быть эффективны дренирующие прорезы в виде траншей шириной 0,6… 0,8 м и глубиной до 5,5 м. Траншеи заполняются песком, а над ними отсыпается горизонтальная подушка. Сплошные дренажные прорези устраивают там, где имеется дешевый дренирующий грунт.

В ряде случаев экономично применение дрен из искусственных материалов, например, картонные дрены. Их изготовляют из непроклееного трехслойного картона с поперечным сечением 3 × 100 мм. Коэффициент фильтрации картонной дрены составляет 10-3… 10-1 см/с, это в 100 … 1000 раз больше коэффициентов фильтрации слабого водонасыщенного грунта.

Конечная осадка слоя биогенного грунта или ила в стабилизированном  состоянии, обусловленном намытым и отсыпанным слоем песка, вычисляют по формуле

s = 3ph / (3Е + 4p), (3.1)

где p – давление от песчаного грунта на поверхность слабого водонасыщенного биогенного грунта или ила, кПа; h – толщина слоя биогенного грунта или ила; E – модуль деформации биогенного грунта или ила при полной влагоемкости, кПа.

Осадка сильносжимаемого грунта зависит  от сроков консолидации и от дренирования основания. Осадка недренированного основания пригруженного фильтрующей насыпью в заданный момент времени.

Песчаные подушки. На практике для снижения величины и неравномерности осадок фундаментов часто устраивают песчаные подушки толщиной до пяти метров. С их помощью удается уменьшить глубину заложения фундаментов и распределить давление на большую площадь, уменьшить размеры фундаментов. Песчаные подушки устраивают из средне- и крупнозернистых песков, щебня, гравия, гравийно-песчаной смеси.

Известковые сваи. В ряде случаев целесообразно применять известковые сваи. В толще грунтов под защитой обсадных труб пробуривают скважины диаметром 30 … 50 см. Их заполняют негашеной комовой известью слоем около одного метра. В обсадную трубу спускают трамбовку массой 300 … 400 кг и производят уплотнение. Снова насыпают слой извести и утрамбовывают и т.д.

Грунт уплотняется при погружении трубы и после трамбования извести. При взаимодействии негашеной извести с поровой водой происходит гашение. Вследствие этого увеличивается диаметр известковой сваи на 60 … 80 % и дополнительно уплотняется грунт вокруг сваи. Кроме того, при гашении извести выделяется большое количество тепла. Температура поднимается до 200 °С. Вследствие чего влажность окружающего грунта уменьшается, а прочностные характеристики увеличиваются. Далее производят поверхностное уплотнение грунта тяжелыми трамбовками.

Песчаные сваи устраивают путем забивки в грунт металлической трубы с закрытым концом. Полость заполняют песком с тщательным уплотнением. Вокруг ствола сваи образуется уплотненная зона слабого грунта диаметром до полутора метров (при диаметре сваи 0,4 … 0,5 м).

Электрохимическая обработка. В практике иногда применяют электрохимическую обработку грунтов для повышения несущей способности оснований сооружений, создания ограждений при проходке котлованов и траншей, борьбы с морозным пучением, с оползнями. Они используются для упрочнения всех видов грунтов с коэффициентом фильтрации менее 0,5 м/сут (мелких и пылеватых песков, супесей, суглинков, глин, илов, разложившегося торфа). Электрохимическая обработка подразделяется на: электроосушение, электролитическую обработку и электросиликатизацию. Долговременное необратимое упрочнение можно получить при введении химических добавок.

Упрочнение грунта происходит благодаря  электрохимическим и структурообразовательным процессам, происходящим в глинистом грунте при пропускании постоянного электрического тока и введении электролитов.

Свайные фундаменты. Их применяют при сравнительно небольшой толщине слабых грунтов (до 12 м), подстилаемых прочными. Сваями прорезают полностью слабый грунт с опиранием на прочный. При забивке свай резко возрастает поровое давление, вследствие чего снижается несущая способность сваи. Со временем поровое давление снижается практически до нуля, а несущая способность сваи возрастает.

В условиях слабого глинистого основания  возможно проявление отрицательного трения. Оседающий вокруг сваи грунт нагружает ее. Величина отрицательного трения может достигнуть 500 кН.

Причинами этого могут быть:

• планировка площади подсыпкой;

• загружение поверхности длительно  действующими полезными нагрузками;

• пригружение слабых грунтов в пределах проездов и улиц периодическими подсыпками при ремонте дорожных покрытий;

• изменение плотности  грунтов в результате понижения  уровня грунтовых вод;

• динамические воздействия  на грунт тяжелого транспорта и промышленных установок;

• проявления процессов, приводящих к постоянному уплотнению молодых слабых грунтов.

Отрицательные силы трения учитывают до глубины, на которой  значения осадки околосвайного грунта превышают половину предельного значения осадки фундамента. Расчетные сопротивления грунта fi принимают для торфа, ила, сапропеля fi =5 кПа.

Если в пределах сваи залегают напластования торфа толщиной более 30 см и возможна пригрузка  территории около фундамента, то расчетное сопротивление fi для грунта, расположенного выше подошвы низшего слоя торфа принимают:

а) при подсыпках высотой  до двух метров, для грунтовой подсыпки и слоев торфа равным 0, для  минеральных грунтов природного сложения – по табл.;

б) при подсыпках от двух до пяти метров – для грунтов, включая подсыпку равным 0,4f, но со знаком "–", для торфа – (–5кПа);

в) при подсыпках более  пяти метров – для грунтов, включая подсыпку – по, но со знаком "–", для торфа – (–5 кПа).

В пределах нижней части  свай, где осадка околосвайного грунта после возведения и загрузки фундамента меньше ½ [su], где su – предельная осадка, расчетные значения fi принимают положительными по, а для торфа, ила, сапропеля – 5 кПа.

В случае, когда консолидация грунта от подсыпки завершилась, сопротивление грунта по боковой поверхности сваи допускается принимать положительным вне зависимости от наличия прослоек торфа, для которых f = 5 кПа.

При забивке свай в  слабые грунты прочность последних  снижается из-за разрушения структурных связей и перераспределения воды в порах грунта. Время "отдыха" свай, соответствующее упрочнению грунта, t ≈ 1,5Ip (Ip – число пластичности). Для повышения несущей способности сваи на их стволе делают уширение в верхней, средней частях и на уровне нижнего конца. В последнем случае расчет свай по прочности ствола должен производится с учетом продольного изгиба. При осадке слабой грунтовой толщи проявляется отрицательное трение.

Для уменьшения сил отрицательного трения применяют специальные обмазки. В практике возможны следующие случаи:

сильно сжимаемый слой расположен с поверхности; на некоторой глубине находится слой сильно сжимаемого грунта, перекрытый

более прочными; толща  состоит из перемежающихся пластов  сильносжимаемых и сравнительно малосжимаемых грунтов.

При критических градиентах напора и скоростях фильтрации возможен фильтрационный выпор грунта. В практике наблюдается контактный размыв грунта фильтрационным потоком, идущим вдоль двух смежных слоев различной крупности. Для связных грунтов различают следующие фильтрационные деформации: суффозия, выпор, контактный выпор, отслаивание и контактный размыв.

Метод интенсивного ударного уплотнения. В практике гидротехнического строительства используют метод интенсивного ударного уплотнения слабых водонасыщенных грунтов, имеющий две разновидности: метод динамической консолидации и метод ударного разрушения (Ю. К. Зарецкий, 1989).

Работы по динамической консолидации выполняют по многоэтапной схеме с длительными (до месяца) перерывами между этапами, в течении которых рассеивается поровое давление. Расстояние между кратерами применяют равным 2 … 5 диаметрам.

При этом удары в соседней точке не должны нарушать достигнутого эффекта в предыдущей. Трамбовки  применяют массой до 20 т при высоте сбрасывания до 30 м. Л. Менард объяснил механизм динамической консолидации положительной ролью содержащегося в порах газа и процессами сжижения.

Метод ударного разрушения применяют к грунтам с относительно невысоким водонасыщением. Уплотнение их не связано с необходимостью отжатия воды. Длительность между этапами здесь не существенна. Расстояние между центрами соседних лунок значительно меньше, чем при длительной консолидации.

Основным расчетом по деформациям является определение  неравномерности осадок (прогиб, выгиб, перекос, крен, скручивание). Скорость развития осадок во времени ограничивается предельными значениями

ν = ds / dt ≤ [ν].

Для закрепления слабых грунтов применяют: одно- и двухрастворную силикатизацию, смолизацию, одно- и  двухрастворную электросиликатизацию, электролитическую обработку, электроосушение.

 

4.3 Разжижение водонасыщенных грунтов.

 

Явление разжижения заключается  в полной или частичной потере грунтом несущей способности и переходе его в текучее состояние в результате разрушения структуры и смещения частиц относительно друг друга. Необходимыми условиями разжижения являются: разрушение структуры (часто при динамических воздействиях), возможность упрочнения грунта и полное насыщение его водой. Возможность разрушения структуры определяется интенсивностью воздействий, начальным напряженным состоянием и плотностью сложения грунта. Время консолидации (уплотнения) и пребывания грунтов в разжиженном состоянии определяется водопроницаемостью грунта, изменением его прочности, длиной пути фильтрации. Состояние разжижения присуще всем рыхлым водонасыщенным пескам любой прочности.

Информация о работе Строительство в слабых водонасыщенных грунтах