Геометрия Лобачевского и ее модели

Автор работы: Пользователь скрыл имя, 08 Июня 2013 в 17:17, курсовая работа

Краткое описание

Данная тема интересна по нескольким причинам: теория геометрии Лобачевского помогает взглянуть по-другому на окружающий нас мир, это интересный, необычный и прогрессивный раздел современной геометрии, она дает материал для размышлений – в ней не все просто, не все ясно с первого взгляда, чтобы ее понять, нужно обладать фантазией и пространственным воображением. Ситуация с геометрией Лобачевского и геометрией Евклида во многом похожа на ситуацию с Теорией относительности Эйнштейна и классической физикой. Геометрия Лобачевского и ОТП Эйнштейна это прогрессивные взаимосвязанные теории, выполняющиеся на огромных величинах и расстояниях, и остающимися верными на приближениях к нулю. В пространственной модели ОТП используется не обычная евклидовая плоскость, а искривленное пространство, на котором верна теория Лобачевского.

Содержание работы

I. Введение……………………………………………………….…………………3
II. Н.И.Лобачевский и его геометрия……………………………………….…… 6
III. Пятый Постулат Евклида…………………………………………….………..9
IV. Система аксиом Гильберта………………………………………….……….12
Группа 1. Аксиомы принадлежности…………………………………….12
Группа 2. Аксиомы порядка………………………………………………13
Группа 3. Аксиомы конгруэнтности……………………………………...14
Группа 4. Аксиомы непрерывности………………………………………15
Группа 5. Аксиома параллельности………………………………………16
V. Аксиома Лобачевского . параллельные прямые по Лобачевскому …….....17
VI. Теорема о существовании параллельных прямых……………………...….19
VII. Треугольники и четырехугольники на плоскости Лобачевского……...…24
VIII. Взаимное расположение двух прямых на плоскости Лобачевского…....26
IX. Три модели геометрии Лобачевского……………………………………….31
1) Модель Пуанкре……………………………………………………...…31
2) Модель Клейна………………………………………………………….32
3) Интерпритация Бельтрами………………………………...……...……34
X. Практическое применение геометрии Лобачевского………………...……..35
1. Теорема Пифагора…………………………………………………..……..35
2. Замечание к теореме Пифагора……………………………………...……36
3. Площадь треугольника…………………………………...…….…………37
4. Длина окружности и площадь круга………………………....…………..38
XI. Вывод………………………………………………………………………….38
XII. Список литературы..................................................................................…...40

Содержимое работы - 1 файл

kursovaya_geometriya_lobachevskogo_i_ee_modeli.doc

— 472.50 Кб (Скачать файл)

Исследования Лобачевского получили широкое признание после  его смерти. Оказалось, что работы Лобачевского по геометрии представляют собой новый этап в развитии естествознания (недаром английский математик XIXв. Клиффорд называл Лобачевского Коперником геометрии). До Лобачевского евклидову геометрию считали единственно возможным учением о пространстве. Работы Лобачевского опровергли такой взгляд, привели к широким обобщениям в геометрии и их важнейшим приложениям в различных разделах математики, механики, физики и астрономии.

3. Выше было отмечено, что с научной точки зрения  систему аксиом и постулатов  Евклида нельзя признать вполне удовлетворительной, так как у Евклида при изложении геометрии приходится в ряде случаев использовать утверждения, которые явно не высказаны и не доказаны.

В конце 60-х годов прошлого столетия перед математиками возникла задача построить такую систему аксиом элементарной геометрии, на базе которой, опираясь лишь на законы логики, без ссылок на наглядность и очевидность можно было бы изложить всю геометрию. Эта задача стала особенно актуальной после того, как идеи Лобачевского получили всеобщее признание и появились работы Б. Римана по эллиптической геометрии.

В конце XIX и в начале XX в. появились многочисленные работы по обоснованию геометрии ряда таких крупнейших математиков, как Паш, Пеано, Пиери, Гильберт, Вейль и др. Наиболее исчерпывающими явились работы Гильберта и Вейля. Эти исследования оказали большое влияние на формирование аксиоматического метода, который применяется во всех разделах современной математики.

Книга Гильберта «Основания геометрии», вышедшая в 1899 г., сыграла существенную роль в этой серии исследований. Она в 1903 г. была удостоена Международной премии имени Н. И. Лобачевского. В ней впервые дан список аксиом, достаточный для логического построения евклидовой  геометрии. Можно сказать, что с «Оснований геометрии» Гильберта начинается современный аксиоматический метод в математике. Однако рассмотрим все по порядку.

 

III. Пятый постулат Евклида.

Евклид так определяет параллельные прямые: две прямые называются параллельными, если они лежат в одной плоскости и не имеют общей точки.

Лемма 1. Если при пересечении двух прямых секущей накрест (лежащие углы (или соответственные углы) равны, то прямые не пересекаются.

□ Пусть при пересечении  прямых а и b секущей АВ накрест лежащие углы равны (например, 1 = 2 на рис. 206). Если допустить, что прямые а и b пересекаются в некоторой точке Р, то получим треугольник АВР, у которого один из углов при вершине А или В равен внешнему углу при другой вершине (см. рис.).



 

Но это противоречит теореме о внешнем угле треугольника. Второе утверждение теоремы непосредственно следует из доказанного. Чтд.

Возникает вопрос: сколько  же через точку М, не лежащую на прямой а, проходит прямых, параллельных прямой а? Ответ на него дает следующая теорема.

Теорема 1. Если имеет место V постулат, то через каждую точку М, не лежащую на прямой а, проходит только одна прямая, параллельная прямой а.



□ Проведем прямую MN, перпендикулярную к прямой а, N а, и прямую b, проходящую через точку М перпендикулярно к прямой MN (см. рис ниже). Тогда прямые а и b параллельны.

Проведем через точку М произвольную прямую b’ отличную от прямой b. Один из смежных углов 1 либо 2,  отмеченных на  этом же рисунке , острый;  пусть 1 острый. При пересечении прямых а и b' с прямой MN получаем внутренние односторонние углы:  1 и 3, сумма которых меньше двух прямых углов, значит, по V постулату прямые а и b' пересекаются.  ■

 

Существует и обратная теорема:

Теорема 2. Если принять,  что  через точку, не лежащую на данной прямой, проходит только  одна прямая,  параллельная данной, то  справедлив V постулат.

Итак, V постулат эквивалентен (равносилен) так называемой аксиоме параллельных прямых: через точку, не лежащую на данной прямой, проходит не более чем одна прямая, параллельная данной.

Лемма 2. Для произвольного треугольника ABC можно построить   треугольник   А1В1С1   так,   чтобы   АВС = А1В1С1    и   А1

Теорема 4. Сумма углов любого треугольника не больше 2d.

□ Теорему докажем  методом от противного. Пусть существует треугольник ABC, такой, что АВС = 2d + , где > 0. Применяя предыдущую лемму к треугольнику ABC n раз, построим треугольник АпВпСп, удовлетворяющий условиям АпВпСп = АВС и Аn А.  Выберем п так, чтобы 1/2n   А< .   Тогда Ап < . Так как Аn + Вn + Сп = 2d + , то Вп + Сп> 2d.

С другой стороны, легко  доказать, что Вп + Сп < 2d. В самом деле, если - мера внешнего угла треугольника АпВпСп, смежного с углом Вп, то > Сп, а по теореме о смежных углах  + Вп = 2d, поэтому Вп + Cn <С 2d. Мы пришли к противоречию, следовательно, не существует такого треугольника ABC, сумма углов которого больше   чем 2d. Чтд.

Итак, сумма углов любого треугольника не больше 2d. Но не может ли получиться так, что у одних треугольников эта сумма меньше 2d, а у других равна 2d? Отрицательный ответ на этот вопрос дает вторая теорема Саккери — Лежандра.

Теорема 5. Если в одном треугольнике сумма углов равна 2d, то сумма углов любого треугольника равна 2d.  \

Итак  получаем еще  одно предположение, эквивалентное V постулату: существует хотя бы один треугольник, сумма углов которого равна 2d.

IV. Система аксиом  Гильберта.

По Гильберту, предполагается, что даны три различных множества. Элементы первого множества называются точками, элементы второго множества — прямыми, а элементы третьего множества — плоскостями (основные объекты). Точки, прямые и плоскости обозначаются соответственно буквами  А, В, С, ...; а, b, с, ...; , , , ... . Элементы этих множеств находятся в определенных отношениях, которые называются: «принадлежность», «лежать между» и «конгруэнтность» (основные отношения). Природа основных понятий, т. е. основных объектов и основных отношений, может быть какой угодно, но они должны удовлетворять определенным аксиомам, которые я перечислю ниже.

Список Гильберта содержит 20 аксиом, которые разделяются на пять групп.

 Группа 1. Аксиомы   принадлежности.

Аксиомы этой группы определяют свойства взаимного расположения точек, прямых и плоскостей, выражаемые словом «принадлежит»   (или  «лежит ,на», «проходит через»).  Группа  I содержит следующие восемь аксиом.

11 Каковы бы ни были две точки А, В, существует прямая а, проходящая через эти точки.

22. Каковы бы ни были две точки А и В, существует не более одной прямой, проходящей через эти точки.

13.  На каждой прямой лежат по крайней мере две точки. Существуют по крайней мере три точки, не лежащие на одной прямой.

14.  Каковы бы ни были три точки А, В, С, не лежащие на одной 
прямой, существует плоскость а, проходящая через эти точки. На 
каждой плоскости лежит хотя бы одна точка.

15. Каковы бы ни были три точки, не лежащие на одной прямой, существует не более одной плоскости, проходящей через эти точки.

16. Если две точки А и Б прямой а лежат в плоскости а, то каждая точка прямой а лежит в плоскости а.

В этом случае говорят, что прямая а лежит в плоскости а или плоскость а проходит через прямую а.

17.  Если две плоскости а и b имеют общую точку А, то они имеют по крайней мере еще одну общую точку В.

18. Существуют по крайней мере четыре точки, не лежащие в одной плоскости.

Исходя из этих аксиом, можно доказать ряд теорем, большинство  из которых в школьном курсе геометрии  не доказываются, так как они наглядно очевидны. Перечислю лишь некоторые  из этих теорем.

1о. Две прямые имеют не более одной общей точки.

2°. Если две плоскости  имеют общую точку, то они  имеют общую прямую, на которой  лежат все общие точки этих  двух плоскостей.

3°. Через прямую  и не лежащую на ней точку,  так же как через две пересекающиеся прямые, проходит одна и только одна плоскость.

4°. На каждой плоскости  существуют три точки, не лежащие  на одной прямой.

 Группа II.  Аксиомы порядка.

Предполагается, что точка  на прямой может находиться в известном отношении к двум другим точкам той же прямой; это отношение выражается словами «лежать между». Если точка В лежит между точкой А и точкой С, то мы запишем так: А — В — С. При этом должны быть удовлетворены следующие четыре аксиомы.

II1.  Если А — В — С, то А, В, С — различные точки одной прямой и С - В - А.

    II2. Каковы бы ни были две точки А и В, существует по крайней мере одна точка С на прямой АВ, такая, что А — В — С.

II3. Среди любых трех точек прямой существует не более одной точки, лежащей между двумя другими.

По Гильберту, отрезком  АВ (или В А) называется пара точек А и В. Точки А и В называются концами отрезка, а любая точка, лежащая между ними,— внутренней точкой отрезка или просто точкой отрезка.

    II4. (аксиома Паша). Пусть А, В, С — три точки, не лежащие на одной прямой, а а — прямая в плоскости ABC, не проходящая ни через одну из точек А, В, С. Тогда если прямая а проходит через точку отрезка АВ, то она проходит также через точку отрезка АС или ВС.

С помощью аксиом групп I и II доказываются многие факты геометрии и вводится ряд основных определений. Прежде всего можно доказать, что между любыми точками существует по крайней мере одна точка, а отсюда легко прийти к выводу, что любой отрезок (а следовательно, и любая прямая) содержит бесконечное множество точек.

 Группа III.  Аксиомы   конгруэнтности.

Предполагается, что отрезок (угол) находится в известном отношении к какому-то отрезку (углу). Это отношение выражается словом «конгруэнтен» или «равен» и обозначается символом « = ». Должны быть удовлетворены следующие пять аксиом.

III1 Если даны отрезок АВ и луч, исходящий из точки А', то существует точка В', принадлежащая данному лучу, такая, что АВ = А'В'.

Можно доказать,  что  точка  В'  на данном  луче  единственная.

III2. Если А'В' = АВ и А"В" = АВ, то А'В' = А" В".

III3. Пусть А — В — С, А’ - В' — С, АВ = А'В' и ВС = В'С’. Тогда АС = А'С’.

III4. Пусть даны hk и флаг (О', h', '). Тогда в полуплоскости ' существует один и только один луч к', исходящий из точки О',  такой, что hk = h'k'.

Каждый угол конгруэнтен  самому себе.

III5. Пусть А, В, С — три точки, не лежащие на одной прямой, и А', В', С’ — тоже три точки, не лежащие на одной прямой. Если при этом АВ = А'В', АС = А'С’, BAC = В'А'С’, то АВС = А'В'С’.

Вот некоторые  теоремы, которые следуют из аксиом конгруэнтности.

1°. Отношение конгруэнтности  отрезков является отношением эквивалентности на множестве отрезков.

2°. В равнобедренном  треугольнике углы при основании  равны.

3°. Первый, второй и  третий признаки равенства треугольников.

4о . Отношение конгруэнтности углов является отношением эквивалентности на множестве углов.

5°. Внешний угол  треугольника больше каждого  угла треугольника, несмежного с ним.

6°. В каждом треугольнике  против большей стороны лежит  больший угол и обратно: против большего угла лежит  большая сторона.

7°. Любой отрезок  имеет одну и только одну  середину.

8°. Любой угол имеет  одну и только одну биссектрису.

Группа IV.  Аксиомы непрерывности.

IV1 (аксиома Архимеда). Пусть АВ и CD — какие-нибудь отрезки. Тогда на прямой АВ существует конечное множество точек А1, А2,  ..., Ап, таких, что выполняются условия: 

а)   А— А1 —- А2, А1 — А2 — А3,     ...,    Аn-2 — An-1— Ап

     б)    АА1= А1А2 = ...= = Ап-1Ап = CD;

в) А — В — Ап.

IV2 (аксиома Кантора). Пусть на произвольной прямой а дана бесконечная последовательность отрезков A1B1;. А2 В2, ..., из которых каждый последующий лежит внутри предыдущего и, кроме того, для любого отрезка CD найдется натуральное число n, такое, что АпВп < CD. Тогда на прямой а существует точка М, принадлежащая каждому из отрезков данной последовательности.


Ясно, что  такая точка М единственная. В самом деле, если предположить, что точка N, отличная от точки М, также принадлежит каждому из отрезков данной последовательности, то получим АпВп MN при любом п, что противоречит аксиоме.

К важнейшим следствиям из аксиом групп I—IV относится теория измерения отрезков и углов.

Для обоснования евклидовой теории параллельных Гильберт к аксиомам групп I—IV добавляет еще одну аксиому параллельных прямых.

Информация о работе Геометрия Лобачевского и ее модели