Анализаторы как рецепторная система. Их устойчивость и функции

Автор работы: Пользователь скрыл имя, 17 Января 2011 в 12:08, реферат

Краткое описание

Структура анализаторов. Разнообразные раздражения, постоянно действующие на живой организм, воспринимаются различными рецепторными образованиями, которые в зависимости от их местоположения и строения избирательно на них реагируют. Так, рецепторные образования глаза воспринимают световые раздражения, уха — звуковые, кожи — механические, температурные раздражения и т. д.

Содержимое работы - 1 файл

анализаторы.doc

— 666.00 Кб (Скачать файл)

Над волосковыми  клетками расположена текториальная мембрана. Она имеет лентовидную форму и желеобразную консистенцию. Ее ширина и толщина увеличиваются от основания улитки к вершине. Информация от волосковых клеток передается по дендритам клеток, образующих спиральный узел. Второй отросток этих  клеток — аксон — в составе преддверно-улиткового нерва направляется к стволу мозга и к промежуточному мозгу, где происходит! переключение  на  следующие  нейроны,  отростки  которых  идут в] височный отдел коры головного мозга.

Механизм  передачи и восприятия звука. Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участив мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым opraном. При этом волосковые клетки своими волосками касаютс текториальной мембраны, и вследствие механического раздражен* в них возникает возбуждение, которое передается далее на волокна; преддверно-улиткового нерва.

Слуховой  анализатор человека воспринимает звуковые волны частотой их колебаний от 20 до 20 тыс. в секунду. Высота тона определяется частотой колебаний: чем она больше, тем выше по тону воспринимаемый звук. Анализ звуков по частоте осуществляется периферическим отделом слухового анализатора. Под влиянием звуковых колебаний прогибается мембрана окна преддверия, смещая при этом какой-то объем перилимфы. При малой частоте колебаний частицы перилимфы перемещаются по вестибулярной лестнице вдоль спиральной мембраны по направлению к геликотреме и через нее по барабанной лестнице к мембране круглого окна, которая прогибается на такую же величину, что и мембрана овального окна. Если же действует большая частота колебаний, возникает быстрое смещение мембраны овального окна и повышение давления в вестибулярной лестнице. От этого прогибается спиральная мембрана в сторону барабанной лестницы и реагирует участок мембраны, обладающий наименьшей жесткостью. Жесткость спиральной мембраны повышается от основания улитки к ее вершине. Поэтому при действии очень большой частоты прежде всего реагирует участок мембраны вблизи окна преддверия. При повышении давления в барабанной лестнице изгибается мембрана круглого окна, основная мембрана благодаря своей упругости возвращается в исходное положение. В это время частицы перилимфы смещают следующий, более инерционный участок мембраны, и волна пробегает по всей мембране. Колебания окна преддверия вызывают бегущую волну, амплитуда которой возрастает, и максимум ее соответствует какому-то определенному участку мембраны (рис. 69). По достижении максимума амплитуды волна затухает. Чем выше высота звуковых колебаний, тем ближе к окну преддверия находится максимум амплитуды колебаний спиральной мембраны. Чем меньше частота, тем ближе к геликотреме отмечаются наибольшие ее колебания.

 

Рис. 69. Место возникновения максимальных колебаний основной мембраны:

А — при действии высоких звуков; £ — при действии средних звуков; В — при действии низких звуков;    1 — овальное окно;  2 — круглое окно;  3 — бегущая  волна;  4 — основная  мембрана;  5 — геликотрема. 

Установлено, что при действии звуковых волн с  частотой колебаний до 1000 в секунду в колебание приходит весь столб перилимфы вестибулярной лестницы и вся спиральная мембрана. При этом их колебания происходят в точном соответствии с частотой колебаний звуковых волн. Соответственно в слуховом нерве возникают потенциалы действия с такой же частотой. При частоте звуковых колебаний свыше 1000 колеблется не вся основная мембрана, а какой-то ее участок, начиная от окна преддверия. Чем выше частота колебаний, тем меньший по длине участок мембраны, начиная от окна преддверия, приходит в колебание и тем меньшее число волосковых клеток приходит в состояние возбуждения. В слуховом нерве в этом случае регистрируются потенциалы действия, частота которых меньше частоты звуковых волн, действующих на ухо, причем при высокочастотных звуковых колебаниях импульсы возникают в меньшем числе волокон, чем при низкочастотных колебаниях, что связано с возбуждением лишь части волосковых клеток. Значит, при действии звуковых колебаний происходит пространственное кодирование звука. Ощущение той или иной высоты звука зависит от длины колеблющегося участка основной мембраны, а следовательно, от числа расположенных на ней волосковых клеток и от места их расположения. Чем меньше колеблющихся клеток и чем ближе они расположены к окну преддверия, тем более высоким воспринимается звук.

Колеблющиеся  волосковые клетки вызывают возбуждение  в строго определенных волокнах слухового  нерва, а значит, и в определенных нервных клетках головного мозга.

Сила  звука определяется амплитудой звуковой волны. Ощущение интенсивности звука связано с различным соотношением числа возбужденных внутренних и внешних волосковых клеток. Поскольку внутренние клетки менее возбудимы, чем внешние, возбуждение большого числа их возникает при действии сильных звуков.

Электрические явления в улитке. В улитке без всякого звукового  раздражения можно зарегистрировать мембранный потенциал волосковых клеток и потенциал эндолимфы. Мембранный потенциал волосковых  клеток составляет —70  мВ,  а  потенциал  эндолимфы -80 мВ. Отсюда следует, что на границе волосковых клеток с эндолимфой имеется большой потенциал, равный 80—(—70) = 150       Под    влиянием    положительного . потенциала    эндолимфы    мембрана   волосковых  клеток  становится  очень  нестабильной  и   при их соприкосновении с текториальной мембраной дает резкие изме-1 нения МП. Сдвиг в величине МП вызывает возникновение электрического  эффекта,   который   называют  микрофонным  потенциалом. Он проявляется в электрических колебаниях, которые по частоте соответствуют звуковым колебаниям и которые можно зарегистрировать от любой из лестниц улитки. Микрофонный потенциал связан с возбуждением волосковых клеток и исчезает при их разрушении. Наибольшая   величина   его   отмечается   вблизи   кортиева   органа, поэтому считают что микрофонный потенциал возникает на границе волосковых клеток и эндолимфы улиткового протока и является изрецепторным потенциалом, предшествующим возникновению распространяющегося возбуждения в дендритах клеток спирального ганглия.

При действии звуков большой частоты и интенсивности  различают суммационный потенциал, который представляет собой постоянный сдвиг потенциала эндолимфы улиткового протока относительно перилимфы барабанной лестницы. 

обонятельный  анализатор

Строение  обонятельного анализатора. Периферическая часть обонятельного анализатора расположена в слизистой оболочке верхнего носового хода и противолежащей части носовой перегородки (рис. 70, А). Она представлена обонятельными и опорными клетками. Вокруг каждой опорной клетки расположено 9—10 обонятельных (рис. 70, Б). Обонятельные клетки покрыты волосками, которые представляют собой нити длиной 20—30 мкм. Они сгибаются и разгибаются со скоростью 20—50 раз в 1 мин. Внутри волосков расположены фибриллы, которые обычно заходят в утолщение — пуговку, имеющуюся на конце волоска. В теле обонятельной клетки и в ее периферическом отростке расположено большое количество микротрубочек диаметром 0,002 мкм, предполагают, что они осуществляют связь между различными органеллами клетки. Тело обонятельной клетки богато РНК, которая образует возле ядра плотные скопления. После воздействия паров пахучих

Рис. 70. Периферический отдел обонятельного  анализатора:

д — схема строения носовой полости: 1 — нижний носовой ход; 2 — нижняя, 3 — средняя и 4 — верхняя носовые раковины; 5 — верхний носовой ход; Б — схема строения обонятельного эпителия: 1 — тело обонятельной   клетки,   2 — опорная   клетка;   3 — булава;   4 — микроворсинки;   5 — обонятельные   нити. 
 

веществ происходит их разрыхление и частичное  исчезновение, что говорит о том, что функция обонятельных клеток сопровождается изменениями в распределении  РНК и в ее количестве.

Обонятельная  клетка имеет два отростка. Один из них через отверстия продырявленной пластинки решетчатой кости направляется в полость черепа к обонятельным луковицам, в которых возбуждение передается на расположенные там нейроны. Их волокна образуют обонятельные пути, которые подходят к различным отделам ствола мозга. Корковый отдел обонятельного анализатора находится в гиппокамповой извилине и в аммоновом роге.

Второй  отросток обонятельной клетки имеет  форму палочки шириной 1 мкм, длиной 20—30 мкм и заканчивается обонятельным пузырьком — булавой, диаметр которой 2 мкм. На обонятельном пузырьке расположено 9—16 ресничек.

Восприятие  обонятельных раздражений. Обонятельные рецепторы обладают очень большой чувствительностью. Для возбуждения одной обонятельной клетки человека достаточно от 1 до 8 молекул пахучего вещества (бутилмеркаптана). Механизм восприятия запахов до настоящего времени еще не установлен. Предполагают, что обонятельные волоски являются как бы специализированными антеннами, которые активно участвуют в поиске и восприятии пахучих веществ. Относительно механизма восприятия существуют разные точки зрения. Так, Эймур (1962) считает, что на поверхности волосков обонятельных клеток расположены особые рецептивные участки в виде ямок, щелей определенного размера и определенным образом заряженных. Молекулы различных пахучих веществ имеют форму, размер и заряд, комплементарные различным участкам обонятельной клетки, и это обусловливает различение запахов.

Некоторые исследователи полагают, что обонятельный пигмент, имеющийся в обонятельной рецептивной зоне, также участвует в восприятии обонятельных раздражений, как пигмент сетчатки при восприятии зрительных раздражений. Согласно этим представлениям окрашенные формы пигмента содержат возбужденные электроны. Пахучие вещества, действуя на обонятельный пигмент, вызывают переход электронов на более низкий энергетический уровень, что сопровождается обесцвечиванием пигмента и освобождением энергии, которая затрачивается на возникновение импульсов.

Биопотенциалы возникают в булаве и распространяются далее по обонятельным путям до коры головного мозга.

вкусовой  анализатор

Строение  вкусового анализатора. Периферический отдел вкусового анализатора представлен вкусовыми луковицами, которые расположены главным образом в сосочках языка. Различают сосочки желобоватые, листовидные я грибовидные (рис. 71, А). В меньшем количестве вкусовые луковицы встречаются на мягком нёбе и задней стенке глотки. Вкусовая луковица имеет овальную форму и состоит из опорных и рецепторных вкусовых клеток (рис. 71, Б). Вкусовые клетки усеяны на своем конце микроворсинками, которые называют еще вкусовыми волосками. Длина микроворсинок — около 2 мкм, диаметр — около 0,2 мкм. Они выходят на поверхность языка через вкусовые поры.

На вкусовой клетке имеется большое число синапсов, которые образуют волокна барабанной струны и языкоглоточного нерва. Волокна барабанной струны (ветвь язычного нерва) подходят ко всем грибовидным сосочкам, а волокна языкоглоточного нерва — к желобоватым и листовидным. Корковый конец вкусового анализатора находится в гиппокампе, парагиппокамповой извилине и в нижней части заднецентральной извилины.

Вкусовые  клетки непрерывно делятся и непрерывно гибнут. Особенно быстро происходит замещение клеток, расположенных в передней части языка, где они лежат более поверхностно. Замена клеток вкусовой почки сопровождается образованием новых синап-тических структур.

Восприятие  вкусовых раздражителей. Микроворсинки вкусовых клеток являются образованиями, непосредственно воспринимающими вкусовой раздражитель. Мембранный потенциал вкусовых клеток колеблется от —30 до —50 мВ. При действии вкусовых раздражителей возникает рецепторный потенциал величиной от 15 до 40 мВ. Он представляет собой деполяризацию поверхности 

Рис.   71.   Периферический отдел    вкусового    анализатора:

А — сосочки языка: / — листовидный; 2 — грибовидный; 3 — желобоватый; Б — вкусовые клетки и опорные элементы: /— вкусовая пора; 2 — опорная клетка; 3 — рецепторная клетка; 4 — нервные волокна. 
 

вкусовой  клетки, которая является причиной возникновения в волокнах барабанной струны и языкоглоточного нерва генераторного потенциала,   переходящего   по   достижении   критического   уровня в распространяющиеся импульсы. С рецепторной клетки возбуждение передается через синапс на нервное волокно с помощью ацетилхолина.   Некоторые  вещества,   как  например  СаС12,  хинин,   соли тяжелых металлов, вызывают не первичную деполяризацию, а первичную гиперпрляризацию. Ее возникновение связано с осуществлением отрицательных отвергаемых реакций. Распространяющихся импульсов при этом не возникает.

Различные вкусовые клетки обладают разной чувствительностью  к  различным   вкусовым   веществам,   которые  делятся   на   четыре группы: кислое, соленое, сладкое, горькое. Каждая клетка отвечает всегда более чем на одно вкусовое вещество, иногда даже на все четыре, но наибольшей чувствительностью обладает к одному из них. Соответственно в зависимости от расположения клеток с особо высокой чувствительностью к тому или иному вкусовому раздражителю разные участки языка обладают также разной чувствительностью.   Кончик   языка   наиболее   чувствителен   к   сладкому, корень языка — к горькому.

Для вкусовых клеток характерны колебания порога раздражения и различный в разных условиях характер ответа на одни и те же раздражители. Их возбудимость зависит от постоянных влияний друг на друга, а также от состояния рецепторов пищеварительного тракта, обонятельных и др. В норме существует определенная «настройка» вкусовых рецепторов в соответствии с состоянием организма, в частности с состоянием сытости.

Информация о работе Анализаторы как рецепторная система. Их устойчивость и функции