Естесственно научные основы инновационных технологий

Автор работы: Пользователь скрыл имя, 20 Февраля 2012 в 22:22, доклад

Краткое описание

Естественными науками называют совокупность наук о природе. К естественным наукам относится довольно много наук и чтобы понять структуру естествознания необходимо обратиться к предмету изучения. Естественные науки изучают природу пространства материи времени, закономерности и связи явлений природы, как общего характера, так и специфических, характерных лишь для конкретного узкого класса явлений. А иногда и одного явления. Так как основное свойство материи – движение, то можно сказать, что предметом естествознания является движущаяся материя: от самых простых форм движения до самых сложных. Цели естествознания – двоякие: 1) находить сущность явлений природы, их законы и на этой основе предвидеть или создавать новые явления; 2) раскрывать возможность использования

Содержимое работы - 1 файл

еНОИИИИТ.doc

— 571.00 Кб (Скачать файл)

 

10.2)  Структура измерительных устройств.

Существует три основных вида структур измерительных устройств:

1. Разомкнутые структуры с последовательным соединением звеньев.

2. Разомкнутые структуры с параллельным соединением звеньев

3. Встречно – параллельное соединение звеньев.

Всякое измерительное устройство состоит из последовательного ряда измерительных преобразователей, образующих канал передачи информации (измерительный канал). При описании действия измерительного устройства его представляют измерительной цепью — упорядоченной совокупностью преобразовательных элементов, обеспечивающей осуществление всех преобразований сигнала измерительной информации. При этом под преобразовательным элементом понимают элемент средства измерения, в котором происходит преобразование величин. Измерительный прибор обязательно имеет устройство отображения (выдачи) измерительной информации. У приборов с визуальными устройствами это чаще всего отсчетные устройства типа шкала-указатель или цифровое табло.

 

11.1 Концептуальные представления о различиях в строен

Вещество – вид материи, которая обладает  массой покоя. Каждое вещество может находиться в одном из 4 состояний.

Твёрдые тела, атомы или молекулы колеблются вокруг определенного положения равновесия. Изменение положения равновесия происходит очень редко, поэтому сохраняют постоянную форму и объём. Твердое тело - основной материал, используемый человеком. Механические св-ва тв. тел, реакции на внешние механические воздействия: сжатие, растяжение, изгиб, удар, определяются силами связи между структурными частицами.

Жидкости. Молекулы расположены почти вплотную друг к другу, поэтому жидкости несжимаемы, но текучи.Жидкость - агрегатное состояние вещ-ва, промежуточное между твердым и газообразным состояниями.Общими для всех нормальных жидкостей явл-ся их макроскопическая однородность и изотропность при отсутствии внешних воздействий.

Испарение – процесс парообразования, происходящий со всей поверхности жидкости.

Кипение – процесс парообразования, происходящий по всему объему жидкости, внутри образующихся пузырьков газа.

Газы. Расстояние между атомами или молекулами в среднем во много раз больше этих молекул. Могут неограниченно расширяться. Не сохраняют форму и объем. Легко сжимаемы. Газы - агрегатное состояние вещ-ва, в кот. его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь предоставленный им объем.

Газы обладают рядом характерных св-в. Они полностью заполняют сосуд, в котором находятся, и принимают его форму. В отличие от тверых тел и жидкостей, объем газов существенно зависит от давления и температуры. Идеальный газ – газ, в котором отсутствуют силы межмолекулярного взаимодействия. Уравнение состояния ид. газа(закон Авогадро): PV=RT, где P,V,T- давление, молярный объем, абсолютная темп-ра газа, а R=8310 дж/кмоль*град – универсальная газовая постоянная. Изопроцессы ид. газа: изотермический, з-н Бойля-Мариоттаpv = const; изохорный, з-н Шарля p/t = const; изобарный, з-н Гей-Люссака v/t = const. Плазма – ионизированный газ, в к-ом концентрации положит. и отриц. зарядов равны.

 

 

 

 

 

 

11.2) Измерительные преобразователи, их виды

В процессе изучения природных явлений или в процессе производства различных изделий необходимо определять и численно оценивать их физические параметры. Для этого случат измерительные преобразователи или датчики физических величин.Преобразователи измерительные (датчики) — средства измерения, преобразующие измеряемую неэлектрическую величину в другую физическую величину, удобную для использования человеком или автоматическим устройством.В преобразователе необходимо различать первичное и вторичное преобразования измеряемой физической величины.К первичному преобразованию относятся чувствительные элементы, непосредственно воспринимающие измеряемую физическую величину. Например, для измерения давления служат мембраны, анероидные коробки, сильфоны и т. п. Их задача — воспринять давление и преобразовать в механическое перемещение, которое более удобно для дальнейшего — вторичного преобразования в электрическую величину.

Основных видов первичных преобразователей два:

— преобразователи, в которых измеряемая величина преобразуется в линейное или угловое перемещение;

— преобразователи, использующие изменение электрических свойств чувствительного элемента при изменении измеряемой величины.

Принципиально существуют и другие виды преобразователей, например, химические или тепловые, но они не нашли широкого применения.

По виду выходного параметра преобразователи делятся на параметрические и генераторные.

Выходной величиной параметрического преобразователя является пассивный параметр электрической цепи — сопротивление, емкость, индуктивность и пр. Их применение в измерительных схемах требует вспомогательного источника питания. Наибольшее применение нашли параметрические преобразователи следующих видов:

— реостатные, основанные на зависимости величины сопротивления от положения подвижной щетки реостата (потенциометра). Применение — при измерении неэлектрических параметров, которые могут быть преобразованы в линейные или угловые перемещения, например, давлений с помощью анероидиых коробок, если при этом не требуется высокая точность.

— тензометрические, основанные на зависимости величины сопротивления от растяжения чувствительного элемента — тензометрического датчика, представляющего собой петлеобразно уложенную тонкую и длинную металлическую проволоку диаметром 0,02-0,05 мм, приклеенную на объект измерения. Применение — для измерения деформаций, механического напряжения, давлений и т. п.;

— термочувствительные, использующие зависимость сопротивления от температуры, выполняются в виде катушек из тонкой, обычно медной проволоки. Применение — для измерения температуры в замкнутом объеме, для измерения температуры потоков газа или жидкости и т. п.;

— индуктивные, использующие зависимость между индуктивностью или взаимной индуктивностью обмоток от положения отдельного элемента магнитопровода, перемещение которого определяется чувствительным элементом. Обладают высокой точностью. Применение — для измерения перемещений, давлений и т. п.;

— емкостные, использующие зависимость между емкостью конденсатора и размером и расположением его обкладок, а также диэлектрической проницаемостью среды. Обладают высокой чувствительностью, малой инертностью и высокой точностью. Применение — для измерения уровня жидкости, влажности веществ, малых перемещений;

— электролитические, использующие зависимость между электрическим сопротивлением электролита и его концентрацией. Применение — для измерения концентрации растворов;

— ионизационные, использующие зависимость между сопротивлением газового промежутка и степени его ионизации. Применение — для измерения интенсивности излучения, механического перемещения (ионизационный манометр), измерения плотности и состава газа.

Вторичные преобразователи представляют собой некоторую измерительную схему, воспринимающую сигнал от первичного преобразователя и преобразующего в вид, удобный для потребителя. Такими преобразователями являются, например, преобразователи, преобразующие амплитуду напряжения в код, частоту в напряжение, частоту в код и т. п.

 

12.1 Концепция атомизма от Демокрита до наших дней. Планетрарная модель атома Резерфорда. Постулаты Бора.

Атоми́зм — натурфилософская и физическая теория, согласно которой чувственно воспринимаемые (материальные) вещи состоят из неделимых частиц — атомов. Возникла в древнегреческой философии. Дальнейшее развитие получила в философии и науке Средних веков и Нового времени.//Термин атомизм употребляется в двух смыслах. В широком смысле атомизмом называется любое учение об атомах, в узком — древнегреческая философская школа V-IV веков до н. э., учение которой является самой ранней исторической формой атомизма. Школа атомистов (Демокрит). Согласно  учению существуют только атомы и пустота. Атомы — мельчайшие неделимые, невозникающие и неисчезающие, качественно однородные, непроницаемые (не содержащие в себе пустоты) сущности (частицы), обладающие определённой формой. Демокрит предложил продуманный вариант механистического объяснения мира: целое у него представляет собой сумму частей, а беспорядочное движение атомов, их случайные столкновения оказываются причиной всего сущего. //Возрождение и раннее Новое время. Сторонники атомизма: Галилей, Гассенди и др. Пьер Гассенди высказал идею, что из однородных неделимых частиц состоят химические элементы.//XIX—XX века. Во второй половине XIX в. было экспериментально доказано, что электрон является одной из основных частей любого вещества. Эти выводы, а также многочисленные экспериментальные данные привели к тому, что в начале XX в. серьезно встал вопрос о строении атома.//Изучение свойств лучей привело к заключению, что они представляют собой поток мельчайших частиц, несущих отрицательный электрический заряд и летящих со скоростью, близкой к скорости света. Электроны были открыты английским физиком Дж. Томсоном. Томсон предложил первую модель атома, по который атом - сгусток материи, обладающий положительным электрическим зарядом, в который вкраплено столько электронов, что в целом атом - электрически нейтральное образование. В этой модели предполагалось, что под влиянием внешних воздействий электроны могли совершать колебания, т. е. двигаться ускоренно. Казалось бы, это позволяло ответить на вопросы об излучении света атомами вещества и гамма-лучей атомами радиоактивных веществ.//Планетарная модель атома Резерфорда. В развитии представлений о строении атома велико значение опытов английского физика Э. Резерфорда по рассеянию альфа-частиц в веществе. Резерфорд сделал вывод: значительно отклонение альфа-частиц обусловлено их взаимодействием с положительным зарядом большей массы. Такое отклонение испытывали лишь немногие альфа-частицы, т.е. те, которые оказались вблизи положительного заряда сравнительно небольших размеров. //Анализируя результат своих опытов, Резерфорд предложил ядерную (планетарную) модель атома: вокруг положительного ядра с зарядом Ze (Z- порядковый номер элемента в системе Менделеева, е – элементарный заряд) по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Движущиеся по замкнутым орбитам электроны обладают центростремительным ускорением. Согласно классической электродинамике, ускоренные электроны излучают электромагнитные волны, вследствие чего непрерывно теряют энергию. Поэтому электрон, вращаясь вокруг ядра, будет излучать энергию. В результате потери энергии, двигаясь по спирали и приближаясь к ядру, он в конце концов упадет на него. //Первая попытка построить качественно новую - квантовую - теорию атома была предпринята Нильсом Бором. В основу своей теории Бор положил ядерную модель Резерфорда. Первый постулат Бора (постулат стационарных состояний): в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией равной разности энергий соответствующих стационарных состояний.

 

12.2) Простейшие системы визуализации измеряемых сигналов и информации.Одним из простых и в то же время наиболее распространенных приборов для визуализации измеряемых сигналов, изменяющихся во времени, является электронный осциллограф.Основным элементом электронного осциллографа является электроннолучевая трубка, которая представляет собой вакуумный баллом, расширяющийся на одном конце, на внутренней плоскости этого торца, служащего экраном, нанесен люминофор, светящийся при попадании на него электронов. Непосредственно перед экраном нанесен внутри балкона на его стенки токопроводящий слой, служащий анодом, на который через внешний электрод подается высокое — от 400 до 5000 Вольт положительное относительно катода напряжение.

На противоположном узком конце баллона расположен источник быстрых электронов — электронная пушка. Она состоит из катода, управляющего электрода я фокусирующего цилиндра. Электроны испускаются нагретым оксидным слоем, нанесенным на торец катода.Электроны, вылетая из катода, устремляются к аноду, но по дороге фокусируются потенциалом фокусирующего цилиндра в узкий луч, конец которого достигает экрана, заставляя светится ту его точку, на которую упал пучок электронов.На пути к экрану пучок последовательно проходит между двумя парами управляющих пластин. При подаче напряжения на горизонтально расположенные пластины пучок отклоняется от отрицательно заряженной пластины и притягивается к положительно заряженной, отклоняясь от прямой линии вверх или вниз. При подаче напряжения на вертикально расположенные пластины пучок отклоняется от отрицательно заряженной пластины и притягивается к положительно заряженной, отклоняясь от прямой линии влево или вправо по горизонтальной линии.

Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении. Так как масса электронов очень мала, то они почти мгновенно реагируют на изменение разности потенциалов управляющих пластин.

Поскольку отклонение луча от центра экрана пропорционально значению напряжения, подаваемого на пластины, осциллограф может использоваться в качестве электроизмерительного прибора. Осциллограф предназначен для:1) изучения процессов во времени;2) определения фазовых соотношений двух изучаемых напряжений. Для исследования быстропеременных электрических процессов в осциллографе осуществляется развертка — равномерное перемещение электронного луча по горизонтали. Для этого напряжение на горизонтально отклоняющих пластиках должно изменяться линейно во времени, а для возвращения луча в исходное положение напряжение должно очень быстро падать до нуля, такая форма напряжения носит название пилообразной.

Для выполнения второй задачи на пластины вертикального отклонения подается первое напряжение, а на пластины горизонтального отклонения второе, на экране возникает фигура Лиссажу в виде эллипса, если поданы оба напряжения,  имеют синусоидальную форму и одинаковую частоту; эллипс может иметь вид от прямой линии до окружности в зависимости от соотношения фаз синусоид: в виде двух петель, если соотношение частот равно двум., три петли, если соотношение частот равно трем и т. д.

Широкое распространение получили многолучевые осциллографы и осциллографы с памятью (запоминающие). Запоминание сигнала в таких осциллографах производится на специальном запоминающем экране или в электронной памяти

 

 

 

 

 

 

 

 

 

 

 

13.1 Коспускулярно-волновой дуализм, волны де Бройля

Атоми́зм — натурфилософская и физическая теория, согласно которой чувственно воспринимаемые (материальные) вещи состоят из неделимых частиц — атомов. Возникла в древнегреческой философии. Дальнейшее развитие получила в философии и науке Средних веков и Нового времени.

Корпускулярно-волновой дуализм — теория в квантовой механике, гласящая, что в зависимости от системы отсчета поток электромагнитного излучения можно рассматривать и как поток частиц (корпускул), и как волну. В частности, свет — это и корпускулы (фотоны), и электромагнитные волны. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны.

Соотношения неопределённостей Гейзенберга являются теоретическим пределом точности одновременных измерений двух некоммутирующих наблюдаемых. Они справедливы как для идеальных измерений, иногда называемых измерениями фон Неймана, так и для неидеальных измерений или измерений Ландау.Волны де Бройля – волны, связанные с любой движущейся материальной частицей. Любая движущаяся частица (например, электрон) ведёт себя не только как локализованный в пространстве перемещающийся объект - корпускула, но и как волна, причём длина этой волны даётся формулой  = h/р, где h = 6.6.10-34 Дж.сек – постоянная Планка, а р – импульс частицы. Эта волна и получила название волны де Бройля. Если частица имеет массу m и скорость v << с (с – скорость света), то импульс частицы р = mv и дебройлевская длина волны связаны соотношением  = h/mv.

Принцип неопределенности. Экспериментальные исследования свойств микрочастиц (атомов, электронов, ядер, фотонов и др.) показали, что точность определения их динамических переменных (координат, кинетической энергии, импульсов и т.п.) ограничена и регулируется открытым в 1927 г. В. Гейзенбергом принципом неопределенности. Согласно этому принципу динамические переменные, характеризующие систему, могут быть разделены на две (взаимно дополнительные) группы: ) временные и пространственные координаты (t и q);
2) импульсы и энергия (p и E). При этом невозможно определить одновременно переменные из разных групп с любой желаемой степенью точности (например, координаты и импульсы, время и энергию). Это связано не с ограниченной разрешающей способностью приборов и техники эксперимента, а отражает фундаментальный закон природы. Его математическая формулировка дается соотношениями: где q, p, E, t - неопределенности (погрешности) измерения координаты, импульса, энергии и времени, соответственно; h - постоянная Планка.

Информация о работе Естесственно научные основы инновационных технологий