Естесственно научные основы инновационных технологий

Автор работы: Пользователь скрыл имя, 20 Февраля 2012 в 22:22, доклад

Краткое описание

Естественными науками называют совокупность наук о природе. К естественным наукам относится довольно много наук и чтобы понять структуру естествознания необходимо обратиться к предмету изучения. Естественные науки изучают природу пространства материи времени, закономерности и связи явлений природы, как общего характера, так и специфических, характерных лишь для конкретного узкого класса явлений. А иногда и одного явления. Так как основное свойство материи – движение, то можно сказать, что предметом естествознания является движущаяся материя: от самых простых форм движения до самых сложных. Цели естествознания – двоякие: 1) находить сущность явлений природы, их законы и на этой основе предвидеть или создавать новые явления; 2) раскрывать возможность использования

Содержимое работы - 1 файл

еНОИИИИТ.doc

— 571.00 Кб (Скачать файл)

13.2 Эффект Доплера и его применение в техникеПри движении объекта в каком-либо силовом поле — электрическом, магнитном или электромагнитном восприятие им действий этого поля изменяется. Это связано с тем, что взаимодействие объекта и поля зависит от относительной скорости движения материи поля и объекта, а поэтому не остается постоянной величиной. Наиболее ярко это проявляется в так называемом доплеровском эффекте.Эффект Доплера — изменение частоты колебаний и длины волны, воспринимаемых приемником колебаний вследствие движения источника волн и наблюдателя относительно друг друга. Основная причина эффекта — изменение числа волн, укладывающихся на пути распространения между источником И приемником.

Доплеровский эффект для звуковых волн наблюдается непосредственно. Он проявляется в повышении тона (частоты) звука, когда источник звука и наблюдатель сближаются и соответственно в понижения тона звука, когда они удаляются.

Доплеровский эффект нашел применение для определения скорости движения объектов — при определении скорости движущейся автомашины, при измерении скорости самолетов, при измерении скоростей сближения или удаления самолетов друг от друга.

В первом случае регулировщик направляет луч переносного радиолокатора навстречу автомашине, и по разности частот посланного и отраженного луча определяет ее скорость.

Во втором случае сам Доплеровский измеритель составляющих скорости устанавливается непосредственно на самолете. Излучаются наклонно вниз три или четыре луча — влево вперед, вправо вперед, влево назад и вправо назад. принимаемые частоты сигналов сравниваются с частотами излучаемых сигналов, разности частот дают представление о составляющей движения самолета по направлению луча, а далее пересчетом полученной информации с учетом положения лучей относительно самолета высчитываются скорость и угол сноса самолета.

В третьем случае в радиолокаторе, установленном на самолете, определяются не только дальность до другого самолета, как в обычных радиолокаторах, но еще и Доплеровский сдвиг частот, что позволяет не только знать расстояние до другого самолета (цели), но и его скорость. На фоне такой способ позволяет отличить движущуюся цель от неподвижной.

Применение эффекта Доплера совместно со спектрометрами в астрономии позволяет получать большой объем информации о поведении далеких от нас звездных объектов и образований

 

 

 

 

 

 

14.1 Основные представления современной химии. Атом  — наименьшая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положительно заряженных протонов и электрически нейтральных нейтронов, а окружающее его облако состоит из отрицательно заряженных электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента.

Молекула — наименьшая частица вещества, несущая его химические свойства.Молекула состоит из двух или более атомов, характеризуется количеством входящих в неё атомных ядер и электронов, а также определённой структуройЭлемент— самостоятельная часть, являющаяся основой чего-либо, например системы или множества.Вещество́ — форма материи, в отличие от поля, обладающая массой покоя. Вещество состоит из частиц, среди которых чаще всего встречаются электроны, протоны и нейтроны. Последние два образуют атомные ядра, а все вместе — атомы, молекулы, кристаллы и т. д.Катион — положительно заряженный ион. Характеризуется величиной положительного электрического заряда: например, NH4+ — однозарядный катион, Ca2+ — двузарядный катион. В электрическом поле катионы перемещаются к отрицательному электроду — катоду.Анион — отрицательно заряженный ион. Характеризуется величиной отрицательного электрического заряда; например, Cl− — однозарядный анион, а SO42− — двузарядный анион. В электрическом поле анионы перемещаются к положительному электроду — аноду. Анионы имеются в растворах большинства солей, кислот и оснований, а также в кристаллических решетках соединений с ионной связью и в расплавах.

Аллотропия— существование одного и того же химического элемента в виде двух и более простых веществ, различных по строению и свойствам: так называемых аллотропических модификаций или аллотропических форм. Аллотропия может быть результатом образования молекул с различным числом атомов (например, атомарный кислород O, молекулярный кислород O2 и озон O3) или образования различных кристаллических форм (например, графит и алмаз); в этом случае аллотропия — частный случай полиморфизма

Полиморфизм кристаллов — в физике, минералогии, химии существование кристаллических веществ с одинаковым составом, но разной структурой.

 

14.2) Квантовые генераторы: физическая сущность, виды и особенности лазеров.

В различных средах, особенно в так называемых “активных” средах имеются квантовые эффекты, которые с успехом могут быть использованы в прикладном плане. Так например в результате накачки атомов активной среды внешней электрической или световой энергией электроны в среде переводятся на более высокий уровень, чем они находятся в обычном состоянии, а затем уже самопроизвольно перебрасываются на нижний уровень, испуская электромагнитную волну строго определенной частоты. При этом испускание фотонов света частью атомов стимулирует механизм испускания фотонов другими атомами, получается лавинный процесс, в котором все испускаемые фотоны синфазируются друг с другом. На это основан принцип действия квантовых генераторов.

Квантовый генератор — это генератор электромагнитных волн, в котором использовано явление вынужденного излучения. Квантовый генератор радио-диапазона сверхвысоких частот (СВЧ) так же как и квантовый усилитель этого диапазона часто называют мазером. Первый квантовый генератор был создан в диапазоне СВЧ в 1955 г. одновременно в СССР (Н. Г. Басов и А. М. Прохоров) и в США (Ч. Таунс). В качестве активной среды а нем использовался пучок молекул аммиака. Поэтому он получил название молекулярного генератора. В дальнейшем был построен квантовый генератор на пучке атомов водорода, стабильность частоты в нем составляла 10-13, в силу чего такие генераторы используются как стандарты частоты для целей высокоточного измерения вре­мени.Квантовые генераторы оптического диапазона — лазеры появились в 1960 г. Лазеры работают в широком диапазоне длин волн от ультрафиолетовой до субмиллиметровой областей спектра, в импульсном и непрерывном режимах. Существуют лазеры на кристаллах и стеклах, газовые, жидкостные и полупроводниковые. В отличие от других источников света лазеры излучают высококогерентные монохроматические световые волны, вся энергия которых концентрируется в очень узком телесном угле.Первый лазер был создан в США с использованием монокристалла рубина. Источником накачки была лампа-вспышка. Эти лазеры в дальнейшем оказались рекордсменами в части энергии импульса. При средней энергии из­лучения в 3 Дж вследствие очень короткого импульса в 1-10 нс, получается мощность одного импульса, исчисляемая миллиардами Вт.Затем были созданы газовые лазеры, работающие на смели гелия и неона, а затем полупроводниковые. В газовых лазерах накачка происходит за счет газового разряда в рабочем теле. Особенно перспективен для юстировочных и нивелировочных работ газодинамический лазер на СО2.В полупроводниковых лазерах накачка происходит за счет инжекции (проникновения) носителей тока через электронно-дырочный переход. Полупроводниковые лазеры отличает высокий кпд и относительная большая мощность непрерывного излучения.

Применение лазеров очень широкое — считывание информации с оптических носителей, измерение дальности (впервые с помощью установленного на Луне уголкового отражателя было измерено расстояние до Луны с точностью 1,5 м), обработка материалов и др. Лазеры нашли применение в микробиоло­гии, медицине, фотохимии, катализе, топографии и пр.

 

 

 

15.1Взаимосвязь атомно-молекулярного строения и химических свойств веществ. Периодическая таблица элементов Д.И. Менделеева

Попытки систематизации химических элементов по их химическим свойствам делались многими учеными, начиная с 30-х годов XIX в. Д. И. Менделеев в 1869 г. разработал таблицу, в основу кот. положены атомные веса эл-тов, т. е. число протонов в ядрах атомов. Выяснилось, что химические св-ва эл-тов периодически зависят от этого числа. В 1911 г. Резерфордом была разработана планетарная модель атома. На ее основе голландский ученый ван ден Брук показал, а Г. Мозли экспериментально доказал, что св-ва элементов зависят не от числа нуклонов, а от числа протонов, т. е. от атомного номера, а не от атомного веса.

В основе теории лежит представление о закономерностях построения элкетронных оболочек (уровней) и подоболочек (подуровней) в атомах по мере роста числа протонов в ядре атома Z и, след-но, числа электронов в оболочках атома. Сходство электронных конфигураций свободных атомов коррелирует с подобием их химического поведения.

Химическая связь - это взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Валентность атомов показывает число связей, образуемых данным атомом с соседними атомами в молекуле. Основными видами химических связей явл-ся ковалентная и ионная.

В ковалентной связи электроны атомов образуют общую орбиталь. В ионных связях электрон передается от одного атома к другому, и образуются противоположно заряженные атомы.Химические реакции - превращения одних веществ в другие, отличные от исходных по химическому составу или строению. Периодический закон элементов Менделеева: свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера в таблице Менделеева).

Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу.

Периодическое изменение свойств элементов с увеличением порядкового номера объясняется периодическим изменением числа электронов на их внешних энергетических уровнях

 

15.2)  Квантовые эффекты в микромире. Понятие о спектрах излучения и поглощения.

Излучение и поглощение электромагнитных волн атомами вещества подчиняется квантовым законам. В частности, оптическое излучение возникает при квантовых переходах между уровнями энергии атомов, молекул, а также твердых и жидких тел. При этом излучение характеризуется определенным спектром - набором частот электромагнитных волн. Спектры испускания соответствуют квантовым переходам с верхних уровней энергии на нижние, спектры поглощения — с нижних на верхние.

Оптические спектры — эго спектры электромагнитного излучения в инфракрасном, видимом и ультрафиолетовом диапазона шкалы электромагнитных волн. Оптические спектры разделяют на спектра испускания (излучения), спектры поглощения, рассеяния и отражения.

Оптические спектры испускания получаются от источников света разложением их излучения по длинам волн спектральными приборами. Спектры поглощения (абсорбции), рассеяния и отражения обычно получают при прохождении света через вещество с последующим его разложением по длинам волн. Оптический спектр характеризуется долей энергии света каждой из длин волн.

Оптические спектры разделяют на линейчатые, состоящие из отдельных спектральных линий, полосатые, состоящие из отдельных полое, охватывающих каждая определенный интервал длин волн, и сплошные, охватывающие широкий диапазон длин волн.

Частота излучения или поглощения определяется законны:

hv=E1-E2где h = 6,625 • 1014 Джс — постоянная Планка; Е1 и E2 — энергии уровней, v — частота излучения (поглощения) электромагнитных колебаний.

Энергия излучения сплошных спектров (энергия излучения в единице объема) определяется законом Планка:

  где k = 1,38-10-23 Дж-К-1 — постоянная Больцмана, T — абсолютная температура.  

 

16.1) Химические связи, химическое равновесие и принцип Ле Шателье. Экзотермические и эндотермические реакции.

Соединение различных веществ приводит к их химическому преобразова­нию, в результате чего из одних исходных веществ получаются другие — продукты химических реакций.

Химическими реакциями являются превращения одних веществ в другие, отличные от исходных по химическому составу или строению. Общее число атомов каждого данного элемента, а также сами химические элементы, составляющие вещества, остаются неизменными. Химические реакции осуществляются при взаимодействии веществ между собой или при внешних воздействиях на них температуры, давления, электрических и магнитных полей и т. п. В ходе химических реакций одни вещества (реагенты) превращаются в другие (продукты реакций). Каждая химическая реакция характеризуется стехиометрическим соотношением — численным соотношением между массами или объемами реагирующих веществ и скоростью химической реакции — количеством продуктов реакции, возникающих в результате реакции за единицу времени в единице объема (если реакция гомогенна, т. е. распространена по всему объему реагирующих веществ) или на единице площади поверхности (если реакция гетерогенна, т. е. распространена только по поверхностям реагирующих тел). Для исходных веществ аналогичным образом определяется скорость их расходования.

Количества реагирующих веществ обычно выражают в молях. Моль — единица количества вещества, содержащая столько структурных единиц (атомов, молекул или их конгломератов) сколько их содержится в нуклиде углерода массой 12 г., т.е. 6,022- 1023 (число Авогадро). Моль (грамм-молекула) — число граммов вещества, равное его молекулярной массе. Например, поскольку молекулярная масса воды равна 18, то ее моль равен 18 г.

Химические соединения — это химические вещества, молекулы которых состоят из нескольких атомов, соединенных химическими связями. Основные типы химических связей — ковалентная и ионная. В первой из них орбитали электронов соседних атомов объединяются в общую молекулярную орбиталь; во второй — орбитали смещаются как результат ионизации атомов в молекуле, но не объединяются.

Экзотермические реакции — это химические реакции, сопровождающиеся выделением теплоты. Таким реакциями являются горение, нейтрализация, большинство реакций образования химических соединений из простых веществ.

Частным случаем экзотермической реакции является взрыв — процесс освобождения большого количества энергии в ограниченном объеме за короткий промежуток времени. В результате взрыва химическое вещество превращается в сильно нагретый газ с очень высоким давлением.

Взрывчатые вещества делятся на инициирующие и бризантные. Инициирующие ВВ задействуются от механического удара или от луча пламени. Бризантные ВВ более мощные, но они менее чувствительны к слабым воздействиям. Задействуются они только от инициирующих ВВ.

Эндотермические реакции — реакции, идущие с поглощением тепла. К таким реакциям относятся реакции разложения молекул на свободные атомы, восстановление металлов из руд, фотосинтез в растениях и образование некоторых сложных соединений из простых веществ.

Принцип Ле-Шателье-Брауна устанавливает, что внешнее воздействие, выводящее систему из состояния термодинамического равновесия, вызывает в системе процессы, стремящиеся ослабить эффект воздействия. Так, при нагревании равновесной системы в ней происходят изменения (напр. хим. реакции), идущие с поглощением теплоты, а при охлаждении — изменения, протекающие с выделением теплоты. При увеличении давления смешение равновесия связано с уменьшением общего объема системы, а уменьшению давления сопутствуют физические или химические процессы, приводящие к увеличению давления.

 

16.2 Проблема отражения — фундаментальное свойство взаимодействия мате­риальных объектов. Простейшим примером отражения является след, оставленный человеком на дороге. Но то же самое происходит в природе повсеместно, так как сам факт взаимодействия тел — это передача и запоминание влияния одного материального тела на другое. В технике это взаимодействие используется во многих направлениях, в частности, для запоминания информации.

Существует множество способов запоминания и накапливания информа­ции. Одним из наиболее перспективных для запоминания изображений явля­ется метод голографии.

Голография — метод получения объемного изображения, основанная на интерференции волн. Идея голографии впервые была высказана Д. Габором (Англия) в 1948 г.

Информация о работе Естесственно научные основы инновационных технологий