Генная инженерия, ее возможности и перспективы

Автор работы: Пользователь скрыл имя, 09 Августа 2011 в 19:52, контрольная работа

Краткое описание

Генная инженерия это новая, революционная технология, при помощи которой ученые могут извлекать гены из одного организма и внедрять их в любой другой. Гены это программа жизни – это биологические конструкции, из которых состоит ДНK и которые обуславливают специфические характеристики, присущие тому или другому живому организму.

Содержание работы

Введение 3

1. Понятие генной инженерии 4

1.1 Историческая справка 7

1.2 Возможности генной инженерии 9

1.3 Перспективы генной инженерии 12

Заключение 14

Список литературы 15

Содержимое работы - 1 файл

КОНТР ННЕ.doc

— 75.50 Кб (Скачать файл)

Министерство  сельского хозяйства Российской Федерации

Федеральное Государственное Образовательное  Учреждение

Высшего Профессионального Образования

Ижевская  государственная сельскохозяйственная академия 

Факультет непрерывного профессионального образования 
 
 
 
 

Контрольная работа по научным направлениям естествознания 

Генная  инженерия, ее возможности и перспективы 
 

Проверил: Баранчук А.А.

Выполнил:.

Специальность: 080109 – 

Бухгалтерский

 учет, анализ и аудит

Курс: 2

Группа:

Шифр:  
 
 
 
 

Ижевск, 2009 г.

 

Содержание 

Введение           3

1. Понятие  генной инженерии       4

1.1 Историческая справка        7

1.2 Возможности генной инженерии      9

1.3 Перспективы генной инженерии      12

Заключение          14

Список  литературы         15

 

Введение 

    Генная  инженерия это новая, революционная технология, при помощи которой ученые могут извлекать гены из одного организма и внедрять их в любой другой. Гены это программа жизни – это биологические конструкции, из которых состоит ДНK и которые обуславливают специфические характеристики, присущие тому или другому живому организму. Пересадка генов изменяет программу организма – получателя и его клетки начинают производить различные вещества, которые, в свою очередь, создают новые характеристики внутри этого организма. При помощи этого метода исследователи могут менять особые свойства и характеристики в нужном им направлении.

    Наука не только решает задачи, которые ставит перед собой сегодняшний день, но и подготовляет завтрашний день техники, медицины, сельского хозяйства, межзвездных полётов, покорения природы. Одна из самых перспективных наук – генетика, изучающая явления наследственности и изменчивости организмов.  Наследственность – одно из коренных свойств жизни, она определяет воспроизведение форм в каждом последующем поколении. И если мы хотим научиться управлять развитием жизненных форм, образованием полезных для нас и устранением вредных, мы должны понять сущность наследственности  и причины появления новых наследственных свойств у организмов.

    Важной  составной частью биотехнологии является генетическая инженерия. Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в "фабрики" для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств.  

 

1. Понятие  генной инженерии 

      Генная  инженерия — это метод биотехнологии, который занимается исследованиями по перестройке генотипов. Генотип является не просто механическая сумма генов, а сложная, сложившаяся в процессе эволюции организмов система. Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим.

      Носителями  материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования  не химические, а функциональные. С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации — генов. В основе действия гена лежат его способность через посредство РНК определять синтез белков. В молекуле ДНК как бы записана информация, определяющая химическую структуру белковых молекул. Ген — участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген — один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.

      Перестройка генотипов, при выполнении задач  генной инженерии, представляет собой  качественные изменения генов не связанные с видимыми в микроскопе изменениями строения хромосом. Изменения  генов, прежде всего, связаны с преобразованием химической структуры ДНК. Информация о структуре белка, записанная в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в синтезируемой молекуле белка. Изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.

      Наиболее  распространенным методом генной инженерии  является метод получения рекомбинантных, т.е. содержащих чужеродный ген, плазмид. Плазмиды представляют собой кольцевые двухцепочные молекулы ДНК, состоящие из нескольких тысяч пар нуклеотидов. Этот процесс состоит из нескольких этапов.

  1. Рестрикция — разрезание ДНК, например, человека на фрагменты.
  2. Лигирование — фрагмент с нужным геном включают в плазмиды и сшивают их.
  3. Трансформация — введение рекомбинантных плазмид в бактериальные клетки. Трансформированные бактерии при этом приобретают определенные свойства. Каждая из трансформированных бактерий размножается и образует колонию из многих тысяч потомков — клон.
  4. Скрининг — отбор среди клонов трансформированных бактерий тех, которые плазмиды, несущие нужный ген человека.

      Весь  этот процесс называется клонированием. С помощью клонирования можно  получить более миллиона копий любого фрагмента ДНК человека или другого  организма. Если клонированный фрагмент кодирует белок, то экспериментально можно изучить механизм, регулирующий транскрипцию этого гена, а также наработать этот белок в нужном количестве. Кроме того, клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма. Этим можно добиться, например, высокие и устойчивые урожаи благодаря введенному гену, обеспечивающему устойчивость к ряду болезней. Если ввести в генотип почвенных бактерий гены других бактерий, обладающих способностью связывать атмосферный азот, то почвенные бактерии смогут переводить этот азот в связанный азот почвы. Введя в генотип бактерии кишечной палочки ген из генотипа человека, контролирующий синтез инсулина, ученые добились получения инсулина при посредстве такой кишечной палочки. При дальнейшем развитии науки станет возможным введение в зародыш человека недостающих генов, и тем самым позволит избежать генетических болезней.

      Эксперименты  по клонированию животных ведутся давно. Достаточно убрать из яйцеклетки ядро, имплантировать в нее ядро другой клетки, взятой из эмбриональной ткани, и вырастить ее — либо в пробирке, либо в чреве приемной матери. Клонированная овечка Доли была создана нетрадиционным путем. Ядро из клетки вымени 6-летней взрослой овцы одной породы пересадили в безъядерное яйцо овцы другой породы. Развивающийся зародыш поместили в овцу третей породы. Так как родившаяся овечка получила все гены от первой овцы — донора, то является ее точной генетической копией. Этот эксперимент открывает массу новых возможностей для клонирования элитных пород, взамен многолетней селекции.

      Еще с 80-х годов появились программы  по изучению генома человека. В процессе выполнения этих программ уже прочитано  около 5 тысяч генов (полный геном  человека содержит 50-100 тысяч). Обнаружен  ряд новых генов человека. Генная инженерия приобретает все большее значение в генотерапии. Потому, что многие болезни заложены на генетическом уровне. Именно в геноме заложена предрасположенность ко многим болезням или стойкость к ним. Многие ученые считают, что в XXI веке будет функционировать геномная медицина и генная инженерия. 

1.1 Историческая справка 

    Как известно жизнь зародилась на Земле  приблизительно 4,6 миллиарда лет  назад, и, какие бы формы она не принимала, за жизненные проявления каждого организма отвечало одно и то же вещество – дезоксирибонуклеиновая кислота (она же - ДНК). ДНК, закрепленная в генах, определяла, и все еще определяет (а в будущем, видимо, под чутким руководством человека) метаболическую активность клеток, необходимую для их выживания, а это и есть жизнь в самом простом определении. Собственно, термин "гены" не использовался до начала прошлого века, хотя исследования того, как они функционируют начались еще в ХIX веке. Австрийский монах Грегор Мендель в течение многих лет наблюдал за потомством растений гороха, который он выращивал на монастырсом огороде. Фиксируя внешние особенности - высоту стебля, окраску лепестков, форму горошин, он смог теоретически предположить существование неких "факторов", которые наследуются потомством от родительских растений. Как и Колумб, Мендель умер, так и не узнав о том, что же ему удалось открыть. С самого начала ХХ века разразился бум, связанный с исследованиями строения клеток. Биологам удалось установить, какие функции выполняет клеточное ядро, раскрыть загадку природы хромосом. Самым важным оказалось то, что стала понятной природа трансляция молекул ДНК: во время меозиса, предшествующего появлению яйцеклеток и сперматозоидов, количество хромосом, в которых и содержится ДНК, уменьшается в два раза, что впоследствии, при слиянии половых клеток, позволит объединить их ядра в единое целое – дать начало новому организму с совершенно уникальным набором генов. В 1953 году, наконец, удалось вычленить двойную спиральную структуру ДНК, которую сейчас в лицо знает каждый школьник. Теперь ДНК признана универсальным биологическим языком, который объединят все обитающие на Земле организмы: человека и бактерии, грибы и растения. Однако, ХХ век – это век не только фундаментальных открытий, но и век инженерии – практического применения этих самых открытий. Поэтому наряду с продолжающимися исследованиями про то, как "все это в целом устроено", семимильными шагами развивались различные отрасли генной инженерии и разнообразные биотехнологии. С самого начала инженерная мысль такого рода касалась в первую очередь того, каким образом можно использовать одни живые организмы, обладающие определенным геном, для того, чтобы улучшить другие - речь шла о растениях или животных. В семидесятых годах ученые научились вырезать участки ДНК одного организма и пересаживать его в другой, что совершило небольшой переворот в производстве разнообразных лекарств - инсулина, гормона человеческого роста и т.д. Не один год ведутся попытки осуществить так называемую терапию человеческими генами - людям, у которых в генном наборе не хватает определенных компонентов или они в какой-то мере неполноценны, пересаживаются гены других людей. Достаточно обширно знания, полученные благодаря генетике, используются в сфере воспроизводства людей. Многие знают, что при определенных условиях вполне реально выращивать детей "из пробирки", а при некоторых ситуациях женского бесплодия – обращаться за помощью к суррогатным матерям. Генетически измененные растения (морозоустойчивые злаки, трансгенный картофель, быстросозревающие помидоры и т.д.) уже появляются на обеденных столах, хотя пока особого ажиотажа не вызывают.  

 

     1.2 Возможности генной инженерии

    Значительный  прогресс достигнут в практической области создания новых продуктов  для медицинской промышленности и лечения болезней человека.В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объёмах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность (по оценкам экономистов, она вошла в лидирующую группу по объёму купли-продажи акций на рынках ценных бумаг). Важной новинкой стало и то, что фармацевтические компании включили в свою сферу выведение новых сортов сельскохозяйственных растений и животных, и тратят на это десятки миллионов долларов в год, они же мобилизировали выпуск химических веществ для быта. Добавок к продукции строительной индустрии и так далее. Уже не десятки тысяч, а возможно, несколько сот тысяч высококвалифицированных специалистов заняты в исследовательских и промышленных секторах фарминдустрии, и именно в этих областях интерес к геномным и генно-инженерным исследованиям исключительно высок. Очевидно, поэтому любой прогресс биотехнологий растений будет зависеть от разработки генетических систем и инструментов, которые позволят более эффективно управлять трансгенами. Для чистого вырезания трансгенного ДНК в растительный геном, всё больше применяют заимствованные из микробной генетики системы гомологичной рекомбинации, такие как системы Cre-lox и Flp-frt. Будущее, очевидно, будет за управляемым переносом генов от сорта к сорту, основанного на применении предварительно подготовленного растительного материала, который уже содержит в нужных хромосомах участки гомологии, необходимого для гомологичного встраивания трангена. Помимо интегративных систем экспрессии, будут опробованы автономно реплицирующиеся векторы. Особый интерес представляют искусственные хромосомы растений, которые теоретически не накладывают никаких ограничений на объём вносимой теоретической информации. Кроме этого учёные занимаются поиском генов, кодирующих новые полезные признаки. Ситуация в этой области меняется радикальным образом, прежде всего, существованию публичных баз данных, которые содержат информацию о большинстве генов, бактерий, дрожжей, человека и растений, а также в следствии разработки методов, позволяющих одновременно анализировать экспрессию большого количества генов с очень высокой пропускной способностью. Применяемые на практике методы можно разделить на две категории:

  1. Методы, позволяющие вести экспрессионное профилирование: субстракционная гибридизация, электронное сравнение EST-библиотек, «генные чипы» и так далее. Они позволяют устанавливать корреляцию между тем или иным фенотипическим признаком и активностью конкретных генов.
  2. Позиционное клонирование, заключается в создании за счет инсерционного мутагенеза мутантов с нарушениями в интересующем нас признаке или свойстве, с последующим клонированием соответствующего гена как такового, который заведомо содержит известную последовательность (инсерция).

Информация о работе Генная инженерия, ее возможности и перспективы