Исследование влияния технологических параметров на процессы низкотемпературной сепарации

Автор работы: Пользователь скрыл имя, 17 Декабря 2010 в 09:50, дипломная работа

Краткое описание

Вариант реализации газового конденсата для переработки на одном из НПЗ возможен, однако оплата конденсата будет строиться по принципу: цена нефти + небольшая премия. Такой принцип оплаты строится из того, что мощности НПЗ рассчитаны, прежде всего, на прием нефти, а не конденсата. Нефтепереработчики не рискуют модернизировать свои мощности под конденсат, поскольку риск постоянной загрузки будет по-прежнему достаточно высок. Как следствие, переработка газового конденсата на мощностях НПЗ даст выход продукции не намного выше, чем при загрузке НПЗ нефтью.

Содержание работы

Задание для ВКР………………………………………………………….…….2

1.Технико-экономическое обоснование ……………………….……...… 4
2.Основные теоретические положения ……………………………...…....5
1.Методы расчета констант фазового равновесия …………….…5
2.1.1. Расчет фазового равновесия по методу В.И. Шилова ………..5

2.1.2. Расчет констант фазового равновесия по уравнению состояния Пенга- Робинсона…………………………………………………………6

2.1.3. Расчёт констант фазового равновесия по уравнению Тека-Стила………………………………………………………………………7

2.2.переработка газового конденсата…………………………………..7

3. Литературный обзор………………………………………………………9

3.1. Совершенствование технологии и оборудования подготовки газа………………………………………………………………………….…….9

3.2. Перспективные технологии глубокой промысловой переработки природного газа…………………………………………………………………14

3.3. Повышение эффективности переработки газового сырья……….20

3.4. Сверхзвуковая сепарация в технологии переработки газового углеводородного сырья…………………………………………………………24

4. Экспериментальная часть………………………………………………….32

4.1. Описание технологического процесса и схемы установки УКПГ..32

4.2. Моделирование процессов промысловой подготовки газа ……...37

4.3. Результаты проведения расчетов……………………………………38

5. Приложении 1………………………………………………………………..43

Содержимое работы - 1 файл

ВКР Глухих.docx

— 820.33 Кб (Скачать файл)

Установка У-335 газоперерабатывающего завода (ГПЗ) предназначена для щелочной очистки пропан-бутановой фракции (СПБТ), вырабатываемой на установках аминовой очистки природного газа (1, 2, ЗУ-370), от сернистых соединений. Проектная мощность установки по сырью - 100 т/ч.

Индивидуальный  состав сернистых соединений, содержащихся в СПБТ (в ppm), приведен ниже (данные испытательного центра ОАО «ВНИИУС»).

Серооксид углерода 3

Сероводород 6

Метилмеркаптан 8000

Этилмеркаптан 1650

Изопропилмеркаптан 40

Основную  часть вредных примесей составляют метил- и этилмеркаптан.

Принципиальная  технологическая схема У-335 приведена на рис. 3.

Очистка СПБТ проводится в четыре ступени: три последовательно работающие ступени - 10%-м раствором щелочи NaOH , с последующей отмывкой от щелочи водой на 4-й ступени. Процесс основан на способности серосодержащих соединений (меркаптаны, сероводород) вступать в реакцию со щелочью с образованием растворимых в воде и нерастворимых в углеводородах соединений.

Каждая  ступень очистки состоит из контактора - смесителя, разделителя и циркуляционного насоса. Контакторы смесители U-образные, тарельчатого типа. На 1, 2 и 3-й ступенях по четыре контактора-смесителя. На 4-й ступени - два контактора-смесителя.

Очищенная от сероводорода и меркаптанов СПБТ после водной промывки от щелочи из разделителя В-03 направляется на осушку в один из работающих в режиме осушки адсорберов, загруженных цеолитом NaA. Проходящая снизу вверх через адсорбер пропан-бутановая фракция освобождается от воды и по коллектору направляется в товарный парк.

Первоначальной  проектной схемой был предусмотрен физический способ восстановления свойств отработанного щелочного раствора .

Этот  способ основывался на термической регенерации раствора щелочи и отличался повышенным расходом водяного пара, электроэнергии и топливного газа. Кроме того, образующиеся при регенерации щелочного раствора легкие меркаптаны вызывали значительную коррозию оборудования.

Улучшить  первоначальное проектное решение (блока регенерации отработанного щелочного раствора) удалось благодаря внедрению процесса «ВНИИУС-12», испытанного и внедренного на различных промышленных установках демеркаптанизации углеводородного сырья.

Проведенная реконструкция установки позволила улучшить степень очистки

СПБТ  и исключить сжигание меркаптанов в печах дожига, при этом суммарное снижение выбросов диоксида серы составило 6 тыс. т ежегодно.

В качестве побочного процесса очистки получалось так называемое дисульфидное масло, представляющее собой смесь дисульфидов. Массовый состав дисульфидного масла (в %), получаемого на У-335, приведен ниже.

Углеводороды               55

Дисульфиды....      44,8

В том числе:

    диметилдисульфид      21

   метилзтилдисульфид  18

   диэтилдисульфид  4,2

   прочие дисульфиды  1,6

Проектом  не предусматривалось выделение дисульфидного масла с доведением до товарной формы. В связи с этим данный продукт закачивали в поток стабилизированного конденсата для последующей транспортировки по трубопроводам в ОАО «Салаватнефтеоргсинтез». Однако, как показали исследования, дисульфидное масло может найти квалифицированное использование в нефтехимии и нефтепереработке. Кроме того, оно является сырьем для выделения из него другого ценного продукта - диметилдисульфида.

В России дисульфидное масло производится только на Уфимском НПЗ в качестве побочного продукта при очистке нефтепродуктов и используется на указанном предприятии в качестве ингибитора коксообразования в процессе пиролиза углеводородного сырья. Диметилдисульфид в России не производится, а потребности в нем удовлетворяются исключительно за счет импорта.

Производимый  на У-335 продукт (дисульфидное масло) не мог быть использован потребителями в получаемой форме, так как не соответствовал требованиям по ряду важных показателей, таких, как содержание тяжелых металлов, углеводородов, давление насыщенных паров.

Специалистами ГПЗ совместно с ОАО «ВНИИУС» было проведено обследование технологического процесса и предложен ряд эффективных технических и технологических решений. После их реализации на ГПЗ на существующем оборудовании была наработана опытная партия дисульфидного масла, требуемого потенциальными потребителями качества. Массовый состав (в %) дисульфидного масла установки У-335 (после модернизации процесса) приведен ниже.

Углеводороды менее 0,01

Дисульфиды 99,8

В том  числе:

   диметилдисульфид           70,8

   метилзтилдисульфид 25,6

   диэтилдисульфид            2,8

   прочие дисульфиды            0,6

Данная  партия была отправлена нефтехимическому комбинату «Сибур-Нефтехим» (г. Кстово) для проведения опытно-промышленных испытаний в качестве ингибитора коксообразования.

Первый  этап испытаний, проходивших при участии 000 «ВНИИОС» (г. Москва), продемонстрировал перспективность использования дисульфидного масла в качестве ингибитора коксообразования. В настоящее время на комбинате ведется внедрение рекомендаций института по результатам первого этапа опытно-промышленных испытаний. В дальнейшем испытания планируется продолжить.

Предварительные исследования российского рынка потребления диметилдисульфида продемонстрировали заинтересованность и ряда других нефтехимических предприятий в переводе своих пиролизных установок с импортного диметилдисульфида на дисульфидное масло производства 000 «Газпром добыча Оренбург».

Ориентировочный годовой объем потребления диметилдисульфида в России составляет около 800 т в качестве сульфидирующего агента на нефтеперерабатывающих заводах и около 600 т в качестве ингибитора коксообразования на нефтехимических предприятиях (на установках пиролиза).

С целью  оценки целесообразности производства дисульфидного масла 000 «Газпром добыча Оренбург» подготовлен инвестиционный замысел, в котором проработано несколько потенциально эффективных путей использования дисульфидного масла (кроме использования в качестве ингибитора коксообразования и сульфидирующего агента).

В результате проведенных исследований установлено, что диалкилдисульфиды обладают достаточно высокой растворяющей способностью по отношению к элементарной сере. Доступность и высокая сероемкость диалкилдисульфидов позволяют также использовать их в качестве эффективного растворителя для удаления отложений элементарной серы из газовых скважин, коммуникаций и технологического оборудования при добыче и промысловой обработке высокосернистого природного газа.

Также дисульфидное масло может являться ценным сырьем для синтеза высоколиквидных сераорганических соединений, имеющих широкое использование в различных областях хозяйства. Проведенный анализ экономических показателей данного проекта (срок окупаемости, внутренняя норма доходности, чистый дисконтированный доход) показал его высокую экономическую эффективность при незначительных капитальных вложениях.

С целью  практической реализации проекта:

  • разработан регламент на проектирование, исполнитель - ОАО «ВНИИУС» (г. Казань);
  • разработан пакет необходимой документации на продукт (технические условия, паспорт безопасности), исполнитель - ОАО «ВНИИУС» (г. Казань).

В перспективе  планируется приступить к разработке проектной документации и строительно-монтажным работам.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Рис.3 Принципиальная технологическая схема У-335 

3.4. Сверхзвуковая сепарация в технологии переработки газового углеводородного сырья.

Для подготовки газа, добываемого на газовых или нефтяных месторождениях, к дальнейшей транспортировке потребителям используются традиционные способы, заключающиеся в извлечении тяжелых углеводородов. К ним относятся:

  • абсорбционное извлечение;
  • адсорбция на твердых поглотителях;
  • низкотемпературная конденсация (НТК).

Первый  способ — один из старейших (с 1913 г.). В качестве абсорбента в нем используют керосиновую или дизельную фракции. Производственники называют ее «маслом», и поэтому установки получили название маслоабсорбционных.

НТК —  основной способ выделения углеводородов, заключаюпдийся в конденсации углеводородов при понижении температуры за счет дросселирования газа (эффект Джоуля-Томсона) или его расширения в турбодетандере (изоэнтропийный процесс). Для достижения более низких температур (-70°С) используется искусственное охлаждение пропаном.

Низкотемпературная  конденсация достаточно энергоемка, но при этом достигается максимально возможное извлечение жидких углеводородов и, соответственно, очистка и осушка газа.

В последнее  время в России и за рубежом  уделяется все большее внимание внедрению новых технологий, основанных на законах физики, термодинамики, аэродинамики. Например: регулируемые вихревые трубы;

волновой  детандер-компрессор;

сверхзвуковая сепарация.

В данной статье подробно изложены вопросы, связанные с разработкой и промышленным внедрением последней технологии. В 2002 г. ОАО «АК «Сибур» приступило к опытно-промышленному внедрению новой технологии выделения жидких углеводородов из природного и попутного газа, получившей название сверхзвуковой сепарации — Super Sonic Separator (3S). Разработчик и лицензиар данной технологии — компания TransLang Technologies Ltd. — TLT (Канада). Оператор проекта в России — компания «Фонд деловое сотрудничество "Восток-Запад". Центр "ЭНГО"».

«ЗS»-Texнoлoгия  компании TLT уже запатентована в России, США, Австралии, Евразии. Центр «Энго» имеет лицензированные права на ее использование в России.

Развитие  этой технологии основано на достижениях аэродинамики, связанны» с аэрокосмической техникой. «3S»-CenapaTop (рис. 4) представляет собой участок трубопровода. Для простоты обслуживания и замены внутренних устройств сепаратор собран из отдельных сегментов трубопровода, соединенных фланцами. Газовый поток под избыточным давлением поступает в сепаратор, закручивается специальным   устройством,   разгоняется  до сверхзвуковых скоростей в сопле и затем дросселируется. За счет резких перепадов давления (сжатие и расширение), понижения температуры в рабочей зоне происходит разделение потока на газ и жидкость. Последняя отбирается через специальные устройства, а газовый поток поступает в диффузор, где его давление выравнивается, после чего газ направляется потребителям.

В результате сепарации получается очищенный газ и жидкий поток с остатком растворенных в нем легких газообразных углеводородов С12, т.е. в сепаратор поступает смесь «жидкость в газе», а из него — «газ в жидкости».

В зависимости  от решаемых задач в «3S»-технологии используются до- или сверхзвуковые сопла, различные типы закручивающих устройств и диффузоров. Стенка рабочей зоны может быть снабжена специальной перфорацией для дополнительного отбора жидкости.

На базе этих разработок были созданы соответствующие экспериментальные установки сепарации природного газа, которые прошли тестирование на испытательных стендах. Взяв за основу разработанную и запатентованную в Канаде установку производительностью 7-9 кг/с по входному потоку (около 500 млн нм3/гoд), работающую на испытательном полигоне вблизи г. Калгари (Канада), на одном из предприятий Московской обл. был разработан и изготовлен экспериментальный стенд (рис. 2) с установкой «3S»-сепаратора производительностью 1,5-2,5 кг/с по входному потоку, рабочим давлением до 150 атм. и возможностью изменения начальной   температуры   от   -60   до

+20 0С.

Для выяснения  эффективности «3S»-сепаратора при параметрах газа, используемых в расчетах, были проведены специальные эксперименты на газодинамическом стенде. На нем было проведено более 400 испытаний при различных температурах, давлениях и составах газовых смесей. Испытаны до-, около- и сверхзвуковые режимы сепарации.

Результаты  экспериментов приведены в табл. 1 и 2: в табл. 1 — компонентный состав газа на входе в модельный сепаратор (точка 1) и выходе из него (точка 2), в табл. 2 — режимные параметры испытаний, а также значения разности измеренных объемных концентраций целевых компонентов до и после очистки (Δα=α12 , где α1 и α2 являются суммой концентраций компонентов 3-9, см. табл. 1).

Информация о работе Исследование влияния технологических параметров на процессы низкотемпературной сепарации