Современные энергосберегающие технологии

Автор работы: Пользователь скрыл имя, 21 Ноября 2011 в 20:41, реферат

Краткое описание

В последнее двадцатилетие энергетика обеспечивала рост благосостояния в мире примерно в равных долях за счет увеличения производства энергоресурсов и улучшения их использования и в развитых странах меры по энергосбережению давала 60-65% экономического роста. В результате энергоемкость национального дохода уменьшилась за этот период в мире на 18% и в развитых странах – на 21-27%. Не случайно коренное повышение энергетической эффективности экономики (системных мер по энергосбережению) является центральной задачей Энергетической стратегии России. Энергетическая стратегия предусматривает интенсивную реализацию организационных и технологических мер экономии топлива и энергии, т.е. проведения целенаправленной энергосберегающей политики. Для этого Россия располагает большим потенциалом организационного и технологического энергосбережения. Реализация освоенных в отечественной и мировой практике организационных и технологических мер по экономии энергоресурсов способна к 2020 году уменьшить их расход в стране на 40-48% или на 360-430 млн. т. у. т. в год. Около трети потенциала энергосбережения имеют отрасли ТЭК, другая треть сосредоточена в остальных отраслях промышленности и в строительстве, свыше четверти – в коммунально-бытовом секторе, 6-7% - на транспорте и 3% - в сельском хозяйстве.

Содержимое работы - 1 файл

Современные энерго и водосберегающие технологии.doc

— 585.50 Кб (Скачать файл)

      Например, отличительной особенностью агрегатов  производства Hoval является использование  патентованного воздухораспределителя, обеспечивающего формирование приточной  струи с дальнобойностью от 3,5 до 18 м за счёт автоматически регулируемого положения лопаток, закручивающих воздушный поток. Основным преимуществом такой конструкции является высокая энергетическая эффективность благодаря улучшенным показателям организации воздухообмена, рециркуляции воздуха и рекуперации тепла.

      По  оценкам специалистов, в России более трети всех энергоресурсов страны расходуется на отопление жилых, офисных и производственных зданий. Поэтому все вышеперечисленные технологии и методы энергосбережения будут малоэффективны без борьбы с непродуктивными потерями тепла.

      Какими  же путями можно повысить энергоэффективность  в коммунальной сфере? По мнению специалистов компании ROCKWOOL, мирового лидера в области  производства негорючей теплоизоляции, следует выделить три основных направления  энергосбережения.

      Во-первых, это снижение потерь на этапе выработки и транспортировки тепла - то есть повышение эффективности работы ТЭС, модернизация ЦТП с заменой неэкономичного оборудования, применение долговечных теплоизоляционных материалов при прокладке и модернизации тепловых сетей.

      Во-вторых, повышение энергоэффективности  зданий за счет комплексного применения теплоизоляционных решений для  наружных ограждающих конструкций (в первую очередь, фасадов и кровель). В частности, штукатурные системы  утепления фасадов ROCKFACADE позволяют сократить теплопотери через внешние стены не менее чем в два раза.

      И, в-третьих, использование радиаторов отопления с автоматической регуляцией и систем вентиляции с функции  рекуперации тепла.

      Какими  же путями можно повысить энергоэффективность в коммунальной сфере? По мнению специалистов компании ROCKWOOL, мирового лидера в области производства негорючей теплоизоляции, следует выделить три основных направления энергосбережения. Во-первых, это снижение потерь на этапе выработки и транспортировки тепла - то есть повышение эффективности работы ТЭС, модернизация ЦТП с заменой неэкономичного оборудования, применение долговечных теплоизоляционных материалов при прокладке и модернизации тепловых сетей. Во-вторых, повышение энергоэффективности зданий за счет комплексного применения теплоизоляционных решений для наружных ограждающих конструкций (в первую очередь, фасадов и кровель). В частности, штукатурные системы утепления фасадов ROCKFACADE позволяют сократить теплопотери через внешние стены не менее чем в два раза. И, в-третьих, использование радиаторов отопления с автоматической регуляцией и систем вентиляции с функции рекуперации тепла.

      В последние годы все энергоэффективные  технологии объединяются в концепцию  так называемого пассивного дома, то есть жилища, максимально дружелюбного окружающей среде. В Западной Европе сейчас строятся пассивные дома с энергопотреблением не более 15 Квт, ч/м3 год, что более чем в 10 раз экономичнее типовой отечественной "хрущевки". Можно сказать, что такие здания - это будущее мирового строительства, ведь они фактически отапливаются за счет тепла, выделяемого людьми и электроприборами.

      По  словам Игоря Юсуфова, главы Минэнерго  России, потенциал энергосбережения составляет не менее 400 миллионов тонн условного топлива в год или 30-40% всего энергопотребления страны. В экологическом исчислении это сотни миллионов тонн углекислого газа, которые не попадут в атмосферу.

      Таким образом, энергосберегающие технологии позволяют решить сразу несколько  задач: сэкономить существенную часть  энергоресурсов, решить проблемы отечественного ЖКХ, повысить эффективность производства и уменьшить нагрузку на окружающую среду.

      Энергосберегающие материалы

      Сегодня в России, да и во всем мире, наблюдается  спрос на энергосберегающие материалы, обусловленный ростом цен на энергоносители. Используются различные материалы  для утепления стен, кровли и перекрытий. Рассмотрим основные из них.

      Минераловатные материалы – это теплоизоляционные материалы, которые изготовлены из камня и шлаков. Данные материалы представляют собой вату, сырьем для которой служат базальтовые породы, известняк, доломит и прочие. Шлаковату производят из отработки изделий цветной и черной металлургии. Данные материалы обладают рядом неоспоримых качеств – высокая тепло и звукоизоляция, устойчивость к воздействию влаги, тепла, жидкостей. Они негорючие, легки, экологичны. Монтаж таких материалов довольно прост, так как они легко поддаются изменению форм и размеров. Материалы на основе минеральной ваты используются в противопожарных системах.

      Данные  изделия часто используются при  создании фасадных систем утепления  как обычная мокрая штукатурка, а  так же могут служить в качестве навесного теплоизоляционного слоя в фасадах и стенах. Применяются минеральноватные материалы при утеплении как внутренних, так и внешних стен.

      Материалы для теплоизоляции из стекловаты имеют схожие свойства с минералованными  изделиями, но имеется и ряд различий. Из-за того, что волокна стекла более длинные и толстые, стекловата более упругая и прочная, она легко поддается деформации и принимает более ощутимые формы. Данный вид изоляции так же обладает высокими звукоизоляционными свойствами. Изделия из стекловолокна не подвержены влиянию агрессивных сред, химических веществ и микроорганизмов, поэтому срок их службы практически неограничен. Стекловата так же негорюча. Стекловата хорошо подойдет для внутреннего утепления любых конструкций.

      Стекловолокно это более упругий и эластичный материал, чем стекловата. Он так же обладает всеми положительными качествами стекловаты. На основе стекловолокна был создан утеплительный материал Izover KT11, который может быть использован для широкого применения в различных типах зданий. Данным материалом можно утеплять как кирпичные и деревянные, так и бетонные стены. Упаковка данного материала позволяет его транспортировку и хранения без особых проблем.

      Еще одним современным теплоизоляционным  материалом является пенополистирол экструдированный. Плиты из пенополистирола обладают низкой теплопроводностью, причем довольно высокой плотностью. Данный факт позволяет применять этот материал не только в качестве утеплителя, но и как конструктивный материал, из которого может быть составлены часть стены или потолка. Так же пенополистирол обладает низкой гигроскопичностью, то есть не впитывает влагу.

      Пенополистирол, который выпускается под торговой маркой URSA, трудновоспламеняем и обладает хорошими звукоизоляционными качествами.

      Вспененный полиэтилен используется для тепло-, гидро - и звукоизоляции строительных и промышленных объектов. Продукция выпускается в виде рулонов, матов, жгутов и полых труб стандартных толщин и диаметров. Например, изоляция для труб Стенофлекс-400 (Россия) и Тубекс (Чехия) представляет собой оболочки с продольным разрезом, которые одеваются поверх труб и склеиваются специальным скотчем, клеем или соединяются скобами. Эти материалы легко режутся, поэтому с помощью специальных шаблонов можно, даже не имея специальных навыков, без особого труда сделать изоляцию на колена, вентили, ответвления. Пенополиэтилены имеют хорошие показатели теплопроводности – 0,04 Вт/(м*К), при температуре + 25°С. По группе горючести они относятся к группе Г2, т.е. умеренногорючий по СНиПу 21-01-97*. Сопротивление диффузии пара (или паропроницаемость) – 4600, линейная температурная усадка - не более 1,5%. Благодаря закрытой структуре ячеек, материал не боится воды: водопоглощение - менее 0,8% после 7 суток нахождения в воде. Вспененный полиэтилен обладает химической стойкостью к маслам, строительным материалам, биологически не разлагается. Рабочие температуры этой изоляции – 50°С + 90°С, срок службы достигает 25 лет.

      Такая изоляция называется "отражающей". Фольгированные материалы не только позволяют облачить инженерные коммуникации в "эстетичную упаковку", но и предотвратить тепловые потери, увеличить срок службы оборудования.

      Основное  отличие изоляции из вспененного  каучука - это расширенный температурный  диапазон (-200°С + 175°С), более высокие показатели сопротивления диффузии пара (7000, а для некоторых модификаций - выше 10000) и четкое разделение типов изоляции для конкретно выполняемых задач: от криогенных установок до защиты паропроводов с температурой до + 175°С. Показатель теплопроводности синтетического каучука - 0,036 Вт/м*К при 0°С. Немаловажно, что данный тип изоляции имеет сертификат горючести Г1. Толщина стенок трубной изоляции из вспененного каучука представлена более широкой линейкой типоразмеров. Кроме того, изоляция труб со сверхнизкими температурами носителя возможна только при помощи этого материала, т.к он характеризуется высоким показателем сопротивления проницаемости пара и специальными добавками, позволяющими отдельным маркам выдерживать температуру до – 200 °С.

      Использование материалов на вспененной основе дает комплексную защиту инженерных сетей. Исходя из параметров изоляционных материалов, можно оценить экономическую целесообразность использования того или иного типа изоляции в различных видах инженерных систем.

      В системах горячего водоснабжения с  температурой носителя до 90°С хорошо зарекомендовала  себя изоляция на основе вспененного  полиэтилена. Толщину стенок можно  рассчитать при помощи компьютерных программ, предоставляемых производителями  изоляции. 

      При температуре носителя свыше 90°С необходимо использовать изоляцию на основе вспененного каучука, поскольку полиэтилен не способен долго выдерживать такие температурные режимы без потери свойств.

      В системах холодного водоснабжения  основной проблемой становится защита труб от конденсата. С этим хорошо справляется каучуковая изоляция, но с экономической точки зрения удобнее использовать изоляцию из пенополиэтилена с фольгированным слоем. Фольга служит отличным паробарьером.

      Для изоляции трубопроводов и воздуховодов систем кондиционирования применяется вспененный каучук или отражающая изоляция. Установка этих материалов позволяет повысить эффективность системы, увеличить ее долговечность и снизить уровень шума в соответствии с требованиями СНиП 23-03-2003.

      В системах холодоснабжения и особенно в криогенных системах необходимо применение исключительно специализированных марок вспененного каучука, способных выдерживать низкие и сверхнизкие температуры. Это обусловлено их высоким сопротивлением диффузии водяного пара.  

      4. методы экономии при ведении коммерческого учета воды и тепла

      В последнее время проводится массовое внедрение приборов учета воды и тепла, разрабатываются новые нормативные документы по учёту. Общая координация действий в этой сфере отсутствует, поэтому документы очень часто противоречат друг другу, имеют много слабых мест.

      В частности, приборы не проходят испытания  на электромагнитную совместимость, хотя качество электроэнергии в наших  коммунальных сетях оставляет желать лучшего. Сегодня ни один из испытательных центров не проводит предусмотренные ГОСТом испытания на предмет проверки защищённости от несанкционированного доступа в память приборов.

      Нужно учитывать также и подход наших  потребителей к самой проблеме энергосбережения. После установки прибора учёта многие потребители решают вопросы о снижении платежей за тепло и воду. На первый взгляд нужно экономить на фактическом потреблении. Однако на практике иногда всё оказывается не так. Потребитель часто решает проблему более простым способом – манипуляциями с прибором учёта. А поскольку теплосчётчик достаточно сложен по устройству, алгоритмам работы, монтажу, эксплуатации, то и возможностей фальсификации здесь намного больше. Доказать же, что потребитель сознательно искажает показания приборов, очень сложно по ряду причин.

      Каким образом сегодня корректируются показания приборов? Начнём с водосчётчиков, и не будем касаться таких “древних”  методов, как манипуляции с пломбами.

      Способ, иногда применяемый владельцами  приусадебных участков для снижения затрат на воду, расходуемую для полива. Потребитель решает установить водосчётчики. Он покупает самый дешевый и ненадежный (по отзывам соседей и знакомых) водосчётчик, согласует его применение с поставщиком воды. В соответствии с отечественными стандартами минимальный расход, фиксируемый водосчётчиком, составляет 30 л/ч. Есть ещё порог чувствительности, на котором счётчик должен начать вращаться, но при существующем качестве водопроводной воды уже через две-три недели счётчик кое-как вращается и на минимальном расходе. Кран открывается так, чтобы расход составлял менее 30 л/ч. При этом счётчик вообще не фиксирует разбор воды, т.е., установив прибор, потребитель получает возможность законно не платить за воду. Установив расход, например, в 20 л/ч, можно получить за сутки 480 литров чистой питьевой воды абсолютно бесплатно!

      Другой, чуть более сложный способ. Он уже  требует определенных затрат, но более  удобен для городской квартиры. При  монтаже счётчика требуется установка  сетчатого фильтра с пробкой, которая, как известно, не пломбируется, поскольку периодически требуется чистка фильтра. Потребитель покупает в хозяйственном магазине гибкий шланг (подводку), вкручивает его на место снятой сливной гайки фильтра, и получает воду в обход счётчика. При приходе инспектора “Водоканала” для проверки счётчика (что случается весьма редко), инспектора достаточно подержать за дверью пару минут, чтобы за это время вывернуть гайку шланга и поставить штатную пробку.

Информация о работе Современные энергосберегающие технологии